High-speed and low-power thermally tunable devices with suspended silicon waveguide

  • Fei Duan
  • Kai Chen
  • Yonglin YuEmail author


High-speed and low-power reconfigurable photonic devices, such as thermally tunable devices, are needed for high throughput in optical communication networks. Based on thermo-electric coupling simulation and theoretical analysis, temperature response processes of the thermally tunable devices with suspended silicon waveguide proposed previously are investigated, with a focus on the effects of layer thicknesses and materials. The results show that the response time and the figure of merit (FOM) can both be reduced by 10% and 20% when the heater thickness varies from 0.16 to 0.08 μm and the cladding thickness decreases from 1.2 to 0.8 μm, respectively. The response time of devices with claddings of alumina, aluminum nitride and silicon nitride has an improvement of 50.8%, 59.8% and 83.5% separately compared with that of the device with silica cladding. Through these optimizations, it is demonstrated by the simulation that the response time and power consumption can be reduced to less than 20 μs and 1 mW separately for the thermally tunable switches.


Thermally tunable devices Filters Switches Response time Figure of merit 



This work was supported in part by the National Natural Science Foundation of China (No. 61675073), in part by Fundamental Research Funds for the Central Universities (2016YXZD004), in part by the National High Technology Developing Program of China (2013AA014503), and in part by Wuhan International Joint Laboratory on Optoelectronics.


  1. Asheghi, M., Touzelbaev, M., Goodson, K., Leung, Y., Wong, S.: Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates. J. Heat Transf. 120(1), 30–36 (1998)CrossRefGoogle Scholar
  2. Atabaki, A., Hosseini, E.S., Eftekhar, A., Yegnanarayanan, S., Adibi, A.: Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt. Express 18(17), 18312–18323 (2010)ADSCrossRefGoogle Scholar
  3. Chen, K., Duan, F., Yu, Y.: High-performance thermo-optic tunable grating filters based on laterally supported suspended silicon ridge waveguide. Opt. Express 26(15), 19479–19488 (2018)ADSCrossRefGoogle Scholar
  4. Chen, K., Duan, F., Yu, Y.: Performance-enhanced silicon thermo-optic Mach–Zehnder switch using laterally supported suspended phase arms and efficient electrodes. Opt. Lett. 44(4), 951–954 (2019)ADSCrossRefGoogle Scholar
  5. Dai, D., Liu, D., Wang, S.: Reconfigurable Photonic Integrated Devices on Silicon, vol. 10823. SPIE/COS Photonics Asia. SPIE (2018)Google Scholar
  6. Dong, P., Qian, W., Liang, H., Shafiiha, R., Feng, D., Li, G., Cunningham, J.E., Krishnamoorthy, A.V., Asghari, M.: Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt. Express 18(19), 20298–20304 (2010)ADSCrossRefGoogle Scholar
  7. Duan, F., Chen, K., Yu, Y.: Optimization of thermally tunable grating filters with air trench and beam-pillar structures. Opt. Commun. 439, 239–243 (2019a)ADSCrossRefGoogle Scholar
  8. Duan, F., Chen, K., Yu, Y.: Transient simulations and analyses of thermally tunable devices. In: International Conference on Numerical Simulation of Optoelectronics Devices (2019b)Google Scholar
  9. Duquenne, C., Besland, M.P., Tessier, P.Y., Gautron, E., Scudeller, Y., Averty, D.: Thermal conductivity of aluminium nitride thin films prepared by reactive magnetron sputtering. J. Phys. D Appl. Phys. 45(1), 218–224 (2012)CrossRefGoogle Scholar
  10. Geis, M.W., Spector, S.J., Williamson, R.C., Lyszczarz, T.M.: Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004)ADSCrossRefGoogle Scholar
  11. Giuntoni, I., Gajda, A., Krause, M., Steingrüber, R., Bruns, J., Petermann, K.: Tunable Bragg reflectors on silicon-on-insulator rib waveguides. Opt. Express 17(21), 18518–18524 (2009)ADSCrossRefGoogle Scholar
  12. Han, X., Cheng, Q., Liu, F., Yu, Y.: Numerical analysis on thermal tuning efficiency and thermal stress of a thermally tunable SG-DBR laser. IEEE Photonics J. 8(3), 1–12 (2016)CrossRefGoogle Scholar
  13. Liu, K., Zhang, C., Mu, S., Wang, S., Sorger, V.J.: Two-dimensional design and analysis of trench-coupler based Silicon Mach–Zehnder thermo-optic switch. Opt. Express 24(14), 15845–15853 (2016)ADSCrossRefGoogle Scholar
  14. Lu, Z., Murray, K., Jayatilleka, H., Chrostowski, L.: Michelson interferometer thermo-optic switch on SOI with a 50-μW power consumption. In: 2016 IEEE Photonics Conference (IPC), pp. 107–110 (2016)Google Scholar
  15. Qu, P., Chen, W., Li, F., Liu, C., Dong, W.: Analysis and design of thermo-optical variable optical attenuator using three-waveguide directional couplers based on SOI. Opt. Express 16(25), 20334–20344 (2008)ADSCrossRefGoogle Scholar
  16. Raum, C.R., Gauthier, R., Tait, R.N.: Integrated heaters for the thermal tuning of Bragg grating filters on silicon-on-insulator rib waveguides. Microwave Opt. Technol. Lett. 53(3), 672–676 (2011)CrossRefGoogle Scholar
  17. Schall, D., Mohsin, M., Sagade, A.A., Otto, M., Chmielak, B., Suckow, S., Giesecke, A.L., Neumaier, D., Kurz, H.: Infrared transparent graphene heater for silicon photonic integrated circuits. Opt. Express 24(8), 7871–7878 (2016)ADSCrossRefGoogle Scholar
  18. Shubin, I., Li, G., Zheng, X., Luo, Y., Thacker, H., Yao, J., Park, N., Krishnamoorthy, A.V., Cunningham, J.E.: Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators. Opt. Quantum Electron. 44(12–13), 589–604 (2012)CrossRefGoogle Scholar
  19. Song, J., Fang, Q., Tao, S.H., Liow, T.Y., Yu, M.B., Lo, G.Q., Kwong, D.L.: Fast and low power Michelson interferometer thermo-optical switch on SOI. Opt. Express 16(20), 15304–15311 (2008)ADSCrossRefGoogle Scholar
  20. Sun, P., Reano, R.M.: Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt. Express 18(8), 8406–8411 (2010)ADSCrossRefGoogle Scholar
  21. Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E.S., Watts, M.R.: Large-scale nanophotonic phased array. Nature 493, 195–199 (2013)ADSCrossRefGoogle Scholar
  22. Wang, S., Dai, D.: Polarization-insensitive 2 × 2 thermo-optic Mach-Zehnder switch on silicon. Opt. Lett. 43(11), 2531–2534 (2018)ADSCrossRefGoogle Scholar
  23. Xu, Q., Jiang, M., Niu, D., Wang, X., Wang, L., Chiang, K.S., Zhang, D.: Fast and low-power thermo-optic switch based on organic-inorganic hybrid strip-loaded waveguides. Opt. Lett. 43(20), 5102–5105 (2018)ADSCrossRefGoogle Scholar
  24. Yamane, T., Nagai, N., Katayama, S.-I., Todoki, M.: Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. J. Appl. Phys. 91(12), 9772–9776 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations