Advertisement

Optical absorption enhancement in vertical InP nanowire random structures for photovoltaic applications

  • Farzaneh Adibzadeh
  • Saeed OlyaeeEmail author
Article
  • 16 Downloads

Abstract

We have investigated the numerical method on optical properties of vertical InP nanowires with three types of random structures, i.e. random diameter, height, and position. It is found that light absorption in random structures is improved compared to their periodic structures. Also, enhancement of absorption in random position structure is slight while random diameter shows significant absorption enhancement, which achieves 10.4% improvement compared to the periodic structure. This is due to additional resonances, broadening of existing resonance, and lower optical reflection.

Keywords

Optical absorption Vertical InP nanowires FDTD Solar cell 

Notes

References

  1. Abujetas, D.R., Paniagua-Domínguez, R., Sánchez-Gil, J.A.J.A.P.: Unraveling the Janus role of Mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting. ACS Photonics 2(7), 921–929 (2015)CrossRefGoogle Scholar
  2. Battaglia, C., Hsu, C.M., Söderström, K., Escarré, J., Haug, F.J., Charrière, M., Boccard, M., Despeisse, M., Alexander, D.T.L., Cantoni, M., Cui, Y., Ballif, C.: Light trapping in solar cells: can periodic beat random? ACS Nano 6(3), 2790–2797 (2012)CrossRefGoogle Scholar
  3. Branham, M.S., Hsu, W.C., Yerci, S., Loomis, J., Boriskina, S.V., Hoard, B.R., Han, S.E., Ebong, A., Chen, G.: Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics. Adv. Opt. Mater. 4(6), 858–863 (2016)CrossRefGoogle Scholar
  4. Buin, A., Verma, A., Svizhenko, A., Anantram, M.J.N.l.: Significant enhancement of hole mobility in [110] silicon nanowires compared to electrons and bulk silicon. Nano Lett. 8(2), 760–765 (2008)ADSCrossRefGoogle Scholar
  5. Cao, L., White, J.S., Park, J.-S., Schuller, J.A., Clemens, B.M., Brongersma, M.L.J.N.M.: Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8(8), 643–647 (2009)ADSCrossRefGoogle Scholar
  6. Cao, A., Shan, M., Paltrinieri, L., Evers, W.H., Chu, L., Poltorak, L., Klootwijk, J.H., Seoane, B., Gascon, J., Sudhölter, E.J.R., Smet, L.C.P.M.: Enhanced vapour sensing using silicon nanowire devices coated with Pt nanoparticle functionalized porous organic frameworks. Nanoscale 10(15), 6884–6891 (2018)CrossRefGoogle Scholar
  7. Chen, J., Wang, K., Hartman, L., Zhou, W.: H2S detection by vertically aligned CuO nanowire array sensors. J. Phys. Chem. C 112(41), 16017–16021 (2008)CrossRefGoogle Scholar
  8. Dai, X., Zhang, S., Wang, Z., Adamo, G., Liu, H., Huang, Y., Couteau, C., Soci, C.: GaAs/AlGaAs nanowire photodetector. Nano Lett. 14(5), 2688–2693 (2014)ADSCrossRefGoogle Scholar
  9. Deng, C., Tan, X., Jiang, L., Tu, Y., Ye, M., Yi, Y.J.O.C.: Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications. Opt. Commun. 407, 199–203 (2018)ADSCrossRefGoogle Scholar
  10. Dewan, R., Shrestha, S., Jovanov, V., Hüpkes, J., Bittkau, K., Knipp, D.: Random versus periodic: determining light trapping of randomly textured thin film solar cells by the superposition of periodic surface textures. Sol. Energy Mater. Sol. Cells 143, 183–189 (2015)CrossRefGoogle Scholar
  11. Du, Q.G., Kam, C.H., Demir, H.V., Yu, H.Y., Sun, X.W.: Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications. Opt. Lett. 36(10), 1884–1886 (2011)ADSCrossRefGoogle Scholar
  12. Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C.M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816), 66–69 (2001)ADSCrossRefGoogle Scholar
  13. Duan, Z., Li, M., Mwenya, T., Fu, P., Li, Y., Song, D.: Effective light absorption and its enhancement factor for silicon nanowire-based solar cell. Appl. Opt. 55(1), 117–121 (2016)ADSCrossRefGoogle Scholar
  14. Edward, D.P., Palik, I. J. H. O. O. C. O. S. (eds.): Handbook of Optical Constants of Solids. Academic, Orlando (1985)Google Scholar
  15. Fonoberov, V.A., Balandin, A.A.J.N.L.: Giant enhancement of the carrier mobility in silicon nanowires with diamond coating. Nano Lett. 6(11), 2442–2446 (2006)ADSCrossRefGoogle Scholar
  16. Ghahremanirad, E., Olyaee, S., Hedayati, M.: The influence of embedded plasmonic nanostructures on the optical absorption of perovskite solar cells. Photonics (2019).  https://doi.org/10.3390/photonics6020037 CrossRefGoogle Scholar
  17. Ghahremanirad, E., Olyaee, S., Nejand, B.A., Nazari, P., Ahmadi, V., Abedi, K.J.S.E.: Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Sol. Energy 169, 498–504 (2018a)ADSCrossRefGoogle Scholar
  18. Ghahremanirad, E., Olyaee, S., Nejand, B.A., Ahmadi, V., Abedi, K.J.P.S.S.: Hexagonal array of mesoscopic HTM-based perovskite solar cell with embedded plasmonic nanoparticles. Phys Status Solidi (b) (2018b).  https://doi.org/10.1002/pssb.201700291 ADSCrossRefGoogle Scholar
  19. Heiss, M., Russo-Averchi, E., Dalmau-Mallorquí, A., Tütüncüoğlu, G., Matteini, F., Rüffer, D., Conesa-Boj, S., Demichel, O., Alarcon-Lladó, E., Morral, A.F.: III–V nanowire arrays: growth and light interaction. Nanotechnology (2013).  https://doi.org/10.1088/0957-4484/25/1/014015 CrossRefGoogle Scholar
  20. Hu, L., Chen, G.: Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7(11), 3249–3252 (2007)ADSCrossRefGoogle Scholar
  21. Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001)ADSCrossRefGoogle Scholar
  22. Huang, F., Pascoe, A.R., Wu, W.Q., Ku, Z., Peng, Y., Zhong, J., Caruso, R.A., Cheng, Y.B.: Effect of the microstructure of the functional layers on the efficiency of perovskite solar cells. Adv. Mater. (2017).  https://doi.org/10.1002/adma.201770139
  23. Jain, V., Nowzari, A., Wallentin, J., Borgström, M.T., Messing, M.E., Asoli, D., Graczyk, M., Witzigmann, B., Capasso, F., Samuelson, L., Pettersson, H.: Study of photocurrent generation in InP nanowire-based p+–in+photodetectors. Nano Research 7(4), 544–552 (2014)CrossRefGoogle Scholar
  24. Johnson, J.C., Yan, H., Schaller, R.D., Haber, L.H., Saykally, R.J., Yang, P.: Single nanowire lasers. J. Phys. Chem. B 105(46), 11387–11390 (2001)CrossRefGoogle Scholar
  25. Könenkamp, R., Word, R.C., Schlegel, C.: Vertical nanowire light-emitting diode. Appl. Phys. Lett. 85(24), 6004–6006 (2004)ADSCrossRefGoogle Scholar
  26. Liao, Q.L., Jiang, H., Zhang, X.W., Qiu, Q.F., Tang, Y., Yang, X.K., Liu, Y.L., Huang, W.H.: A single nanowire sensor for intracellular glucose detection. Nanoscale 11(22), 10702–10708 (2019)CrossRefGoogle Scholar
  27. Lin, C., Povinelli, M.L.: Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics. Opt. Express 19(105), A1148–A1154 (2011)ADSCrossRefGoogle Scholar
  28. Ma, J.W., Lee, W.J., Bae, J.M., Jeong, K.S., Oh, S.H., Kim, J.H., Kim, S.-H., Seo, J.-H., Ahn, J.-P., Kim, H., Cho, M.-H.: Carrier mobility enhancement of tensile strained Si and SiGe nanowires via surface defect engineering. Nano Lett. 15(11), 7204–7210 (2015)ADSCrossRefGoogle Scholar
  29. Ma, G., Du, R., Cai, Y., Shen, C., Gao, X., Zhang, Y., Liu, F., Shi, W., Du, W., Zhang, Y.: Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides. Sol. Energy Mater. Sol. Cells 193, 163–168 (2019)CrossRefGoogle Scholar
  30. Maeda, S., Tomioka, K., Hara, S., Motohisa, J.: Fabrication and characterization of InP nanowire light-emitting diodes. Jpn. J. Appl. Phys. (2012).  https://doi.org/10.1143/JJAP.51.02BN03 CrossRefGoogle Scholar
  31. Mohseni, P.K., Behnam, A., Wood, J.D., Zhao, X., Yu, K.J., Wang, N.C., Rockett, A., Rogers, J.A., Lyding, J.W., Pop, E.: Monolithic III–V nanowire solar cells on graphene via direct van der waals epitaxy. Adv. Mater. 26(22), 3755–3760 (2014)CrossRefGoogle Scholar
  32. Moulin, E., Steltenpool, M., Boccard, M., Garcia, L., Bugnon, G., Stuckelberger, M., Feuser, E., Niesen, B., Erven, R., Schuttauf, J.W., Haug, F.J., Ballif, C.: 22-D Periodic and random-on-periodic front textures for tandem thin-film silicon solar cells. IEEE J. Photovolt. 4(5), 1177–1184 (2014)CrossRefGoogle Scholar
  33. Muskens, O.L., Rivas, J.G., Algra, R.E., Bakkers, E.P., Lagendijk, A.: Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 8(9), 2638–2642 (2008)ADSCrossRefGoogle Scholar
  34. Otuonye, U., Kim, H.W., Lu, W.D.: Ge nanowire photodetector with high photoconductive gain epitaxially integrated on Si substrate. Appl. Phys. Lett. (2017).  https://doi.org/10.1063/1.4982648 CrossRefGoogle Scholar
  35. Park, J.H., Nandi, R., Sim, J.K., Um, D.Y., Kang, S., Kim, J.S., Lee, C.R.: A III-nitride nanowire solar cell fabricated using a hybrid coaxial and uniaxial InGaN/GaN multi quantum well nanostructure. RSC Adv. 8(37), 20585–20592 (2018)CrossRefGoogle Scholar
  36. Parkinson, P., Joyce, H.J., Gao, Q., Tan, H.H., Zhang, X., Zou, J., Jagadish, C., Herz, L.M., Johnston, M.B.: Carrier lifetime and mobility enhancement in nearly defect-free core–shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett. 9(9), 3349–3353 (2009)ADSCrossRefGoogle Scholar
  37. Parsons, R., Tamang, A., Jovanov, V., Wagner, V., Knipp, D.: Comparison of light trapping in silicon nanowire and surface textured thin-film solar cells. Appl. Sci. (2017).  https://doi.org/10.3390/app7040427 CrossRefGoogle Scholar
  38. Pauzauskie, P.J., Sirbuly, D.J., Yang, P.: Semiconductor nanowire ring resonator laser. Phys. Rev. Lett. (2006).  https://doi.org/10.1103/PhysRevLett.96.143903
  39. Ren, D., Azizur-Rahman, K.M., Rong, Z., Juang, B.C., Somasundaram, S., Shahili, M., Farrell, A.C., Williams, B.S., Huffaker, D.L.: Room-temperature midwavelength infrared InAsSb nanowire photodetector arrays with Al2O3 passivation. Nano Lett. 19(5), 2793–2802 (2019)ADSCrossRefGoogle Scholar
  40. Ruan, X., Kaviany, M.: Photon localization and electromagnetic field enhancement in laser-irradiated, random porous media. Microscale Thermophys. Eng. 9(1), 63–84 (2005a)CrossRefGoogle Scholar
  41. Ruan, X., Kaviany, M.: Enhanced nonradiative relaxation and photoluminescence quenching in random, doped nanocrystalline powders. J. Appl. Phys. (2005b).  https://doi.org/10.1063/1.1900937 CrossRefGoogle Scholar
  42. Ruan, X., Kaviany, M.: Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders. Phys. Rev. B (2006).  https://doi.org/10.1103/PhysRevB.73.155422 CrossRefGoogle Scholar
  43. Salem, M.S., Zekry, A., Shaker, A., Abouelatta, M., Abdolkader, T.M.J.S.S.: Performance enhancement of a proposed solar cell microstructure based on heavily doped silicon wafers. Semicond. Sci. Technol. (2019).  https://doi.org/10.1088/1361-6641/ab0078 CrossRefGoogle Scholar
  44. Street, R.A., Wong, W.S., Paulson, C.: Analytic model for diffuse reflectivity of silicon nanowire mats. Nano Lett. 9(10), 3494–3497 (2009)ADSCrossRefGoogle Scholar
  45. Sun, J., Yin, Y., Han, M., Yang, Z., Lan, C., Liu, L., Wang, Y., Han, N., Shen, L., Wu, X., Ho, J.C.: Nonpolar-oriented Wurtzite InP nanowires with electron mobility approaching the theoretical limit. ACS Nano 12(10), 10410–10418 (2018)CrossRefGoogle Scholar
  46. Wu, Y., Yan, X., Wei, W., Zhang, J., Zhang, X., Ren, X.: Optimization of GaAs Nanowire Pin junction array solar cells by using AlGaAs/GaAs heterojunctions. Nanoscale Res. Lett. (2018).  https://doi.org/10.1186/s11671-018-2503-8 CrossRefGoogle Scholar
  47. Xu, Z., Huangfu, H., Li, X., Qiao, H., Guo, W., Guo, J., Wang, H.: Role of nanocone and nanohemisphere arrays in improving light trapping of thin-film solar cells. Opt. Commun. 377, 104–109 (2016)ADSCrossRefGoogle Scholar
  48. Yan, X., Li, B., Wu, Y., Zhang, X., Ren, X.: A single crystalline InP nanowire photodetector. Appl. Phys. Lett. (2016).  https://doi.org/10.1063/1.4960713 CrossRefGoogle Scholar
  49. Yao, M., Huang, N., Cong, S., Chi, C.Y., Seyedi, M.A., Lin, Y.T., Cao, Y., Povinelli, M.L., Dapkus, P.D., Zhou, C.: GaAs nanowire array solar cells with axial p–i–n junctions. Nano Lett. 14(6), 3293–3303 (2014)ADSCrossRefGoogle Scholar
  50. Zhang, G.J., Zhang, G., Chua, J.H., Chee, R., Wong, E.H., Agarwal, A., Buddharaju, K.D., Singh, N., Gao, Z., Balasubramanian, N.: DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett. 8(4), 1066–1070 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nano-photonics and Optoelectronics Research Laboratory (NORLab)Shahid Rajaee Teacher Training UniversityTehranIran

Personalised recommendations