Advertisement

Hybrid plasmonic optical modulator based on multi-layer graphene

  • Hamid VahedEmail author
  • Sahar Soltan Ahmadi
Article
  • 40 Downloads

Abstract

Hybrid plasmonic waveguide provided high confinement of the propagating light and it is compatible with silicon on insulator technology. Graphene with unique optical properties has been used in optical modulator to give a high extinction ratio, broadband operation, and small footprint. In this paper, we used graphene as an absorber layer in a hybrid plasmonic waveguide structure to get sub-wavelength field confinement and better interaction between the graphene and the propagating light to reach maximum absorption of the graphene. We studied the effects of a different number (2–6) of the graphene layers on the extinction ratio, bandwidth, and energy consumption. The modulation extinction ratio is as high as 36 dB/μm and it has a flat response in a wide range of wavelength. The power consumption is about 14 fJ/bit. This modulator has a good response in all communication bands.

Keywords

Graphene Hexagonal-boron-nitride Plasmon Opto-electric Modulator 

Notes

Acknowledgements

S. S. Ahmadi and H. Vahed thank H. Baghban and H. Soofi for useful discussions.

References

  1. Alam, M., Meier, J., Aitchison, J., Mojahedi, M.: Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Opt. Express 18, 12971–12979 (2010)ADSCrossRefGoogle Scholar
  2. Chen, X., Wang, Y., Xiang, Y., Jiang, G., Wang, L., Bao, Q., et al.: A broadband optical modulator based on a graphene hybrid plasmonic waveguide. J. Lightwave Technol. 34, 4948–4953 (2016)ADSCrossRefGoogle Scholar
  3. Dai, D., He, S.: A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express 17, 16646–16653 (2009)ADSCrossRefGoogle Scholar
  4. Dai, D., He, S.: Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Opt. Express 18, 17958–17966 (2010)ADSCrossRefGoogle Scholar
  5. Dai, D., Shi, Y., He, S., Wosinski, L., Thylen, L.: Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt. Express 19, 12925–12936 (2011)ADSCrossRefGoogle Scholar
  6. Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008)ADSCrossRefGoogle Scholar
  7. Falkovsky, L.A.: Optical properties of graphene and Iv–Vi semiconductors. Phys. Uspekhi 51, 887–897 (2008)ADSCrossRefGoogle Scholar
  8. Falkovsky, L.: Optical properties of graphene. In: Journal of Physics: Conference Series, p. 012004 (2008)Google Scholar
  9. Falkovsky, L., Pershoguba, S.: Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007)ADSCrossRefGoogle Scholar
  10. Geick, R., Perry, C., Rupprecht, G.: Normal modes in hexagonal boron nitride. Phys. Rev. 146, 543–546 (1966)ADSCrossRefGoogle Scholar
  11. Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J., Van Den Brink, J.: Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007)ADSCrossRefGoogle Scholar
  12. Gosciniak, J., Tan, D.T.: Theoretical investigation of graphene-based photonic modulators. Sci. Rep. 3, 1897 (2013)ADSCrossRefGoogle Scholar
  13. Gosciniak, J., Tan, D.T.H., Corbett, B.: Enhanced performance of graphene-based electro-absorption waveguide modulators by engineered optical modes. J. Phys. D Appl. Phys. 48(23), 235101 (2015)ADSCrossRefGoogle Scholar
  14. Grigorenko, A., Polini, M., Novoselov, K.: Graphene plasmonics. Nat. Photonics 6, 749–758 (2012)ADSCrossRefGoogle Scholar
  15. He, X.Y., Li, R.: Comparison of graphene-based transverse magnetic and electric surface plasmon modes. IEEE J. Sel. Top. Quantum Electron. 20(1), 62–67 (2013)ADSMathSciNetGoogle Scholar
  16. He, J., Tao, L., Zhang, H., Zhou, B., Li, J.: Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale 11(6), 2577–2593 (2019)CrossRefGoogle Scholar
  17. Hu, X., Wang, J.: High figure of merit graphene modulator based on long-range hybrid plasmonic slot waveguide. IEEE J. Quantum Electron. 53, 1–8 (2017)CrossRefGoogle Scholar
  18. Huang, B.-H., Lu, W.-B., Li, X.-B., Wang, J., Liu, Z.-G.: Waveguide-coupled hybrid plasmonic modulator based on graphene. Appl. Opt. 55, 5598–5602 (2016)ADSCrossRefGoogle Scholar
  19. Kim, K., Choi, J.-Y., Kim, T., Cho, S.-H., Chung, H.-J.: A role for graphene in silicon-based semiconductor devices. Nature 479(7373), 338–344 (2011)ADSCrossRefGoogle Scholar
  20. Koester, S.J., Li, M.: High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100, 171107 (2012)ADSCrossRefGoogle Scholar
  21. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)ADSCrossRefGoogle Scholar
  22. Lee, S., Lee, K., Liu, C.-H., Kulkarni, G.S., Zhong, Z.: Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat. Commun. 3, 1018 (2012)ADSCrossRefGoogle Scholar
  23. Li, W., Bigeng, C., Chao, M., Wei, F., Yao, X., Xiyuan, L., Zhifang, H., et al.: Ultrafast all-optical graphene modulator. Nano Lett. 14(2), 955–959 (2014)ADSCrossRefGoogle Scholar
  24. Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., et al.: A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)ADSCrossRefGoogle Scholar
  25. Liu, M., Yin, X., Zhang, X.: Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012)ADSCrossRefGoogle Scholar
  26. Lu, Z., Zhao, W.: Nanoscale electro-optic modulators based on graphene-slot waveguides. JOSA B 29, 1490–1496 (2012)ADSCrossRefGoogle Scholar
  27. Lu, L., Wang, W., Leiming, W., Jiang, X., Xiang, Y., Li, J., Fan, D., Zhang, H.: All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation. ACS Photonics 4(11), 2852–2861 (2017)CrossRefGoogle Scholar
  28. Luo, S., Wang, Y., Tong, X., Wang, Z.: Graphene-based optical modulators. Nanoscale Res. Lett. 10, 199 (2015)ADSCrossRefGoogle Scholar
  29. Miller, D.A.: Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009)CrossRefGoogle Scholar
  30. Miller, D.A.: Are optical transistors the logical next step? Nat. Photonics 4, 3–5 (2010)ADSCrossRefGoogle Scholar
  31. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., et al.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)ADSCrossRefGoogle Scholar
  32. Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., et al.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)ADSCrossRefGoogle Scholar
  33. Oulton, R.F., Sorger, V.J., Genov, D., Pile, D., Zhang, X.: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008)CrossRefGoogle Scholar
  34. Qu, S., Ma, C., Liu, H.: Tunable graphene-based hybrid plasmonic modulators for subwavelength confinement. Sci. Rep. 7, 5190 (2017)ADSCrossRefGoogle Scholar
  35. Reed, G.T., Mashanovich, G., Gardes, F., Thomson, D.: Silicon optical modulators. Nat. Photonics 4, 518–526 (2010)ADSCrossRefGoogle Scholar
  36. Robinson, J.A., LaBella, M., Zhu, M., Hollander, M., Kasarda, R., Hughes, Z., et al.: Contacting graphene. Appl. Phys. Lett. 98, 053103 (2011)ADSCrossRefGoogle Scholar
  37. Sensale-Rodriguez, B.: Graphene-based optoelectronics. J. Lightwave Technol. 33, 1100–1108 (2015)ADSCrossRefGoogle Scholar
  38. Shin, J.-S., Kim, J.T.: Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide. Nanotechnology 26, 365201 (2015)ADSCrossRefGoogle Scholar
  39. Soref, R., Bennett, B.: Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987)ADSCrossRefGoogle Scholar
  40. Vahed, H., Ahmadi, S.S.: Graphene-based plasmonic electro-optic modulator with sub-wavelength thickness and improved modulation depth. Appl. Phys. B 123, 265 (2017)ADSCrossRefGoogle Scholar
  41. Wan, Y., Deng, L.: Modulation and enhancement of optical absorption of graphene-loaded plasmonic hybrid nanostructures in visible and near-infrared regions. J. Appl. Phys. 121, 163102 (2017)ADSCrossRefGoogle Scholar
  42. Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M., et al.: Gate-variable optical transitions in graphene. Science 320, 206–209 (2008)ADSCrossRefGoogle Scholar
  43. Wang, B., Zhang, X., Yuan, X., Teng, J.: Optical coupling of surface plasmons between graphene sheets. Appl. Phys. Lett. 100, 131111 (2012)ADSCrossRefGoogle Scholar
  44. Wang, Y., Zhang, F., Tang, X., Chen, X., Chen, Y., Huang, W., Liang, Z., et al.: All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev. 12(6), 1800016 (2018)ADSCrossRefGoogle Scholar
  45. Woessner, A., Lundeberg, M.B., Gao, Y., Principi, A., Alonso-González, P., Carrega, M., et al.: Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015)ADSCrossRefGoogle Scholar
  46. Wu, J., Pisula, W., Müllen, K.: Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)CrossRefGoogle Scholar
  47. Yang, W., Chen, G., Shi, Z., Liu, C.-C., Zhang, L., Xie, G., Cheng, M., et al.: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12(9), 792–797 (2013)ADSCrossRefGoogle Scholar
  48. Yao, Y., Kats, M.A., Genevet, P., Yu, N., Song, Y., Kong, J., et al.: Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett. 13, 1257–1264 (2013)ADSCrossRefGoogle Scholar
  49. Ye, S.-W., Yuan, F., Zou, X.-H., Shah, M.K., Lu, R.-G., Liu, Y.: High-speed optical phase modulator based on graphene-silicon waveguide. IEEE J. Sel. Top. Quantum Electron. 23, 1–5 (2017)CrossRefGoogle Scholar
  50. Zheng, J., Tang, X., Yang, Z., Liang, Z., Chen, Y., Wang, K., Song, Y., et al.: Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater. 5(9), 1700026 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Engineering Emerging TechnologiesUniversity of TabrizTabrizIran

Personalised recommendations