Advertisement

Modeling of dielectric function in plasmonic quantum dot nanolaser

  • Jamal N. Jabir
  • S. M. M. Ameen
  • Amin Habbeb Al-KhursanEmail author
Article
  • 17 Downloads

Abstract

In this work we present a model of the dielectric function in plasmonic quantum dot (QD) nanolaser. A metal/semiconductor/metal structure was considered to attain plasmonic nanocavity with active region containing: QD, wetting layer and barrier. The dielectric function was calculated for both metal (Ag) and QD structure. The propagation constant of surface plasmon polariton (SPP) at the interface of Ag/InAs-QD structure was calculated and the dispersion relation of the plasmonic QD structure was evaluated. For frequencies far from plasma one, the gap between real and imaginary parts was large and a deviation from linear relation was obvious. The SPP field was strongly localized at the interface due to the effect of zero-dimensional QD structure which has application in the super-resolution and best sensitivity in optical imaging. Results of propagation length of SPP (\(L_{spp}\)) also support this. According to the \(L_{spp}\) results, the damping in the SPP energy was low in the Ag/InAs-QD compared to that in the Ag/air interface. The obtained results are in the range of experimental ones.

Keywords

Surface plasmon polariton Ag/QD Plasmonic QD structure 

Notes

References

  1. Abdullah, M., Noori, F.T.M., Al-Khursan, Amin H.: Terahertz emission in ladder plus Y-configurations in double quantum dot structure. Appl. Opt. 54, 5168–5192 (2015)CrossRefGoogle Scholar
  2. Al-Khursan, A.H.: Gain of excited states in the quantum-dots. Physica E 35, 6–8 (2006)ADSCrossRefGoogle Scholar
  3. Al-Husseini, H., Al-Khursan, A.H., Al-Dabagh, S. Y.: III-Nitride QD Lasers. The Open Nanosci J 3(1), 1–11 (2009)ADSCrossRefGoogle Scholar
  4. Baltar, H., Drozdowicz-Tomsia, K., Goldys, E.: Propagating surface plasmons and dispersion relations for nanoscale multilayer metallic-dielectric films. In: Kim, K.Y. (ed.) Plasmonics-Principles and Applications. IntechOpen, Rijeka (2012).  https://doi.org/10.5772/51218 CrossRefGoogle Scholar
  5. Berini, P., Leon, I.D.: Surface plasmon–polariton amplifiers and lasers. Nat. Photon. 6, 16–24 (2012)ADSCrossRefGoogle Scholar
  6. Bimberg, D., Kirstaedter, N., Ledentsov, N.N., Alferov, ZhI, Kopev, P.S., Ustin, V.M.: In GaAs–GaAs quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 3, 196–205 (1997)ADSCrossRefGoogle Scholar
  7. Chen, L.F., Ong, C.K., Neo, C.P., Varadan, V.V., Varadan, V.K.: Microwave Electronics Measurement and Materials Characterization. Wiley, Hoboken (2004)CrossRefGoogle Scholar
  8. Das, G., Coluccio, M.L., Alrasheed, S., Giugni, A., Allione, M., Torre, B., Perozziello, G., Candeloro, P., Fabrizio, E.Di: Plasmonic nanostructures for the ultrasensitive detection of biomolecules. Rivista Del Nuovo Cimento 39, 547–586 (2016)ADSGoogle Scholar
  9. Dionne, J.A., Sweatlock, L.A., Atwater, H.A.: Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 72, 075405 (2005)ADSCrossRefGoogle Scholar
  10. Dwara, S.N., Al-Khursan, A.H.: Quantum efficiency of InSbBi quantum dot photodetector. Appl. Opt. 54, 9722–9727 (2015)ADSCrossRefGoogle Scholar
  11. Han, Y.J., Li, L.H., Zhu, J., Valavanis, A., Freeman, J.R., Chen, L., Rosamond, M., Dean, P., Davies, A.G., Linfield, E.H.: Silver-based surface plasmon waveguide for terahertz quantum cascade lasers. Opt. Express 26, 3814–3827 (2018)ADSCrossRefGoogle Scholar
  12. He, X.Y., Wang, Q.J., Yu, S.F.: Numerical study of gain-assisted terahertz hybrid plasmonic waveguide. Plasmonics 7, 571–577 (2012)CrossRefGoogle Scholar
  13. Holmström, P., Thylén, L., Bratkovsky, A.: Dielectric function of quantum dots in the strong confinement regime. J. Appl. Phys. 107, 064307 (2010)ADSCrossRefGoogle Scholar
  14. Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)CrossRefGoogle Scholar
  15. Homola, J.: Surface Plasmon Resonance Based Sensors. Springer, Berlin (2006)CrossRefGoogle Scholar
  16. Kim, J., Chuang, S.L.: Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE J. Quantum Electron. 42, 942–952 (2006)ADSCrossRefGoogle Scholar
  17. Kim, J., Laemmlin, M., Meuer, C., Bimberg, D., Eisenstein, G.: Static gain saturation model of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 44, 658–666 (2008)ADSCrossRefGoogle Scholar
  18. Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, Hoboken (2005)zbMATHGoogle Scholar
  19. Li, D.B., Ning, C.Z.: Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure. Phys. Rev. B 80, 153304 (2009)ADSCrossRefGoogle Scholar
  20. Lüth, H.: Solid Surfaces, Interfaces and Thin Films. Springer, Berlin (2015)CrossRefGoogle Scholar
  21. Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, New York (2007)CrossRefGoogle Scholar
  22. Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Scattering, Absorption and Emission of Light by Small Particles. Cambridge University Press, Cambridge (2002)Google Scholar
  23. Ni, C.A., Chang, S., Gargas, D.J., Moore, M.C., Yang, P., Chuang, S.L.: Metal-coated zinc oxide nanocavities. IEEE J. Quantum Electron. 47, 245–251 (2011)ADSCrossRefGoogle Scholar
  24. Okamoto, K.: Surface plasmon enhanced solid-state light-emitting devices. In: Wang, Z.M., Neogi, A. (eds.) Lecture Notes in Nanoscale Science and Technology, Nanoscale Photonics and Optoelectronics, pp. 27–46. Springer, Berlin (2011).  https://doi.org/10.1007/978-1-4419-7587-4_2 CrossRefGoogle Scholar
  25. Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1988)CrossRefGoogle Scholar
  26. Rakic, A.D., Djurisic, A.B., Elazar, J.M., Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998)ADSCrossRefGoogle Scholar
  27. Sernelius, B.E.: Surface modes in physics. Wiley, Hoboken (2001)CrossRefGoogle Scholar
  28. Vargas, W.E.: Dielectric functions of Pd and Zr transition metals: an application of Drude-Lorentz models with simulated annealing optimization. Appl. Opt. 56, 1266–1275 (2017)ADSCrossRefGoogle Scholar
  29. Wijesinghe, T., Premaratne, M.: Dispersion relation for surface plasmon polaritons on a Schottky junction. Opt. Express 20, 7151–7164 (2012)ADSCrossRefGoogle Scholar
  30. Wu, B., Mathews, N., Sum, T.-C.: Plasmonic Organic Solar Cells: Charge Generation and Recombination. Springer, Singapore (2017)CrossRefGoogle Scholar
  31. Zeng, S., Baillargeat, D., Ho, H.-P., Yong, K.-T.: Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 43, 3426–3452 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jamal N. Jabir
    • 1
    • 2
    • 3
  • S. M. M. Ameen
    • 1
  • Amin Habbeb Al-Khursan
    • 2
    Email author
  1. 1.College of ScienceUniversity of BasrahBasrahIraq
  2. 2.Nassiriya Nanotechnology Research Laboratory (NNRL), Science CollegeThi-Qar UniversityNassiriyaIraq
  3. 3.Department of Physics, College of EducationUniversity of Al-QadisiyahDiwaniyahIraq

Personalised recommendations