Investigation of wagon wheel fiber characteristics and flattened supercontinuum generation

  • A. ZakerifarEmail author
  • A. Safaei Bezgabadi
  • M. Hosseinian
  • M. Alvanforoush
  • A. Ahmadi
  • M. Askarbioki


In this paper, the dispersion coefficients and the nonlinear parameter of a wagon wheel fiber is obtained by finite element method. Efficient broadband near infrared supercontinuum generation is predicted in a 15 cm of the single-mode small core silicon wagon wheel fiber by solving the generalized nonlinear Schrödinger equation when the fiber is pumped by femtosecond pulses in the abnormal dispersion regime. Here, it is shown that the flattened supercontinuum spectrum over 850 nm wide is achieved.


Dispersion Finite element method Generalized nonlinear Schrödinger equation Supercontinuum generation Wagon wheel fiber 



  1. Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, San Diego (2007)zbMATHGoogle Scholar
  2. Alfano, R.R.: The Supercontinuum Laser Source. Springer, New York (2006)CrossRefGoogle Scholar
  3. Alfano, R.R., Shapiro, S.L.: Emission in the region 4000 to 7000 via four-photon coupling in glass. Phys. Rev. Lett. 24, 584–587 (1970)ADSCrossRefGoogle Scholar
  4. Drummond, P.D., Corney, J.F.: Quantum noise in optical fibers: I. Stochastic equations. J. Opt. Soc. Am. B 18, 139–152 (2001)ADSCrossRefGoogle Scholar
  5. Dudley, J.M., Genty, G.: Supercontinuum light. Phys. Today 66, 29–34 (2013)CrossRefGoogle Scholar
  6. Dudley, J.M., Taylor, J.R.: Supercontinuum Generation in Optical Fibers. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  7. Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)ADSCrossRefGoogle Scholar
  8. Fujimoto, G.: Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21, 1361–1367 (2003)CrossRefGoogle Scholar
  9. Gonzalo, I.B., Engelsholm, R.D., Bang, O.: Noise study of all-normal dispersion supercontinuum sources for potential application in optical coherence tomography. Proc. SPIE 10591, 105910C-1 (2018)Google Scholar
  10. Herrmann, J., et al.: Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys. Rev. Lett. 88, 173901 (2002)ADSCrossRefGoogle Scholar
  11. Hoseinian, M.S., et al.: Galerkin finite-element method for the analysis of the second harmonic generation in wagon wheel fibers. Int. J. Opt. Photonics 11, 113–122 (2017)CrossRefGoogle Scholar
  12. Husakou, A.V., Herrmann, J.: Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87, 203901 (2001)ADSCrossRefGoogle Scholar
  13. Liu, B.-W., et al.: High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing. Laser Phys. Lett. 6, 44–48 (2008)CrossRefGoogle Scholar
  14. Reddy, J.N.: An Introduction to the Finite Element Method, 3rd edn. McGraw-Hill, New York (2006)Google Scholar
  15. Roy, S., et al.: Dynamics of Raman soliton during supercontinuum generation near the zero-dispersion wavelength of optical fibers. Opt. Express 19, 10443–10455 (2011)ADSCrossRefGoogle Scholar
  16. Safaei, A., Bassi, A., Bolorizadeh, M.A.: Quantum treatment of field propagation in a fiber near the zero dispersion wavelength. J. Opt. 20, 055402 (2018)ADSCrossRefGoogle Scholar
  17. Safaei Bezgabadi, A.: Quantum investigation of the supercontinuum generation in optical fibers. Ph.D. Dissertation, Graduate University of Advanced Technology (2019)Google Scholar
  18. Safaei Bezgabadi, A., Bolorizadeh, M.A.: Quantum mechanical treatment of the third order nonlinear term in NLS equations and the supercontinuum generation. Proc. SPIE 9958, 995803 (2016)CrossRefGoogle Scholar
  19. Safaei Bezgabadi, A., Bolorizadeh, M.A.: Dispersion properties of a single-mode windmill single crystal Sapphire optical fiber and its broadband infrared supercontinuum generation. Opt. Eng. 57, 111805 (2018)ADSGoogle Scholar
  20. Safaei Bezgabadi, A., Borhani, M., Bolorizadeh, M., Bolorizadeh, M.A.: Quantum noise for the propagating solitons in an optical fiber in presence of the third order dispersion coefficient. Proc. SPIE 11123, 111230S (2019)Google Scholar
  21. Shi, L., Alfano, R.R.: Future supercontinuum microscope for medical and biological applications. In: Conference on Laser and Electro-Optics (CLEO): Applications and Technology, pp. 14–17 (2017)Google Scholar
  22. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, New York (2002)CrossRefGoogle Scholar
  23. Udem, T., Reichert, J., Holzwarth, R., Hansch, T.W.: Accurate measurement of large optical frequency differences with a mode-locked laser. Opt. Lett. 24, 881–883 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Photonics DepartmentGraduate University of Advanced TechnologyKermanIran
  2. 2.Atomic and Molecular Group, Faculty of PhysicsYazd UniversityYazdIran
  3. 3.Civil Engineering DepartmentGraduate University of Advanced TechnologyKermanIran

Personalised recommendations