Effect of loss on transverse localization of light in 1D optical waveguide array in the presence of Kerr-type nonlinearity
- 18 Downloads
Abstract
In this paper we have comprehensive study on the interplay among radiation loss, transverse disorder (diagonal and off-diagonal) and Kerr-type nonlinearity on the light propagation in 1D array of optical waveguides. Our numerical results demonstrate the presence of three distinguished regimes of transverse light expansion at different propagation distances. At short propagation distance, the Kerr-type nonlinearity are dominated and results in the transverse localization of light through the self-trapping mechanism. Radiation loss, causes the light escape from the injected guides, affect the light expansion in middle distance via broadening the light beam width. At longer distance the disorder terms led to the transverse localization of light, again. Also, we compared the propagation of light in edge and middle modes in the presence of the above effects. Our results show that the propagation distance of first localized regime for edge modes is larger than the middle modes since the edge modes can exchange energy with one of the left or right waveguides, while for middle modes there are two ways for energy exchange. Therefore the discrete diffraction can be diminished the nonlinear effects in middle modes faster than the edge modes.
Keywords
Diagonal and off-diagonal disorder Radiation loss Kerr-type nonlinearity Edge and middle modes Waveguide arrayNotes
References
- Aceves, A.B., Angelis, C.D., Peschel, T., Muschall, R., Lederer, F., Trillo, S., Wabnitz, S.: Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays. Phys. Rev. E 53, 1172–1189 (1996)ADSCrossRefGoogle Scholar
- Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)ADSCrossRefGoogle Scholar
- Chen, Z., Huang, J., Chai, J., Zhang, X., Li, Y., Malomed, B.A.: Discrete solitons in self-defocusing systems with PT-symmetric defects. Phys. Rev. A 91, 053821 (2015)ADSCrossRefGoogle Scholar
- Christodoulides, D.N., Joseph, R.I.: Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988)ADSCrossRefGoogle Scholar
- Dikopoltsev, A., Shaham, A., Pick, A., Sheinfux, H.H., Segev, M.: Coaction of disorder and PT-symmetry in deep subwavelength multilayers. Front. Opt. JTu4A.45 (2019). https://doi.org/10.1364/FIO.2019.JTu4A.45
- Eichelkraut, T., Heilmann, R., Weimann, S., Stützer, S., Dreisow, F., Christodoulides, D.N., Nolte, S., Szameit, A.: Mobility transition from ballistic to diffusive transport in non-Hermitian lattices. Nat. Commun. 4, 2533 (2013)ADSCrossRefGoogle Scholar
- Eisenberg, H.S., Silberberg, Y., Morandotti, R., Boyd, A.R., Aitchison, J.S.: Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998)ADSCrossRefGoogle Scholar
- Garanovich, I.G., Sukhorukov, A.A., Kivshar, Y.S.: Defect-free surface states in modulated photonic lattices. Phys. Rev. Lett. 100, 203904 (2008)ADSCrossRefGoogle Scholar
- Garanovich, I.L., Longhi, S., Sukhorukov, A.A., Kivshar, Y.S.: Light propagation and localization in modulated photonic lattices and waveguides. Phys. Rep. 518, 1–79 (2012)ADSCrossRefGoogle Scholar
- Golshani, M., Weimann, S., Jafari, K., Khazaei Nezhad, M., Langari, A., Bahrampour, A.R., Eichelkraut, T., Mahdavi, S.M., Szameit, A.: Impact of loss on the wave dynamics in photonic waveguide lattices. Phys. Rev. Lett. 113, 123903 (2014)ADSCrossRefGoogle Scholar
- John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)ADSCrossRefGoogle Scholar
- Kalozoumis, P.A., Morfonios, C.V., Diakonos, F.K., Schmelcher, P.: PT -symmetry breaking in waveguides with competing loss-gain pairs. Phys. Rev. A 93, 063831 (2016)ADSMathSciNetCrossRefGoogle Scholar
- Khazaei Nezhad, M., Bahrampour, A.R., Golshani, M., Mahdavi, S.M., Langari, A.: Phase transition to spatial Bloch-like oscillation in squeezed photonic lattices. Phys. Rev. A 88, 023801 (2013)ADSCrossRefGoogle Scholar
- Khazaei Nezhad, M., Golshani, M., Bahrampour, A.R., Mahdavi, S.M.: Effect of Kerr nonlinearity on the transverse localization of light in 1D array of optical waveguides with off-diagonal disorder. Opt. Commun. 294, 299–304 (2013)ADSCrossRefGoogle Scholar
- Khazaei Nezhad, M., Golshani, M., Mirshamsi, D.: Impact of loss on the light propagation in 1D optical waveguide array in the presence of Kerr-type nonlinearity. Opt. Commun. 405, 387–393 (2017)ADSCrossRefGoogle Scholar
- Lagendijk, A., van Tiggelen, B., Wiersma, D.S.: Fifty years of Anderson localization. Phys. Today 62, 24–29 (2009)CrossRefGoogle Scholar
- Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008)ADSCrossRefGoogle Scholar
- Longhi, S.: Quantum-optical analogies using photonic structures. Laser Photon. Rev. 3, 243–261 (2009)ADSCrossRefGoogle Scholar
- Morandotti, R., Peschel, U., Aitchison, J.S., Eisenberg, H.S., Silberberg, Y.: Dynamics of discrete solitons in optical waveguide arrays. Phys. Rev. Lett. 83, 2726–2729 (1998)ADSCrossRefGoogle Scholar
- Raedt, H.D., Lagendijk, A., Vriest, P.D.: Transverse localization of light. Phys. Rev. Lett. 62, 47–50 (1989)ADSCrossRefGoogle Scholar
- Saleh, B.E.A., Teich, M.C.: Fundamental of Photonics, 2nd edn. Wiley, New York, pp. 152–190 (2007)Google Scholar
- Schwartz, T., Bartal, G., Fishman, S., Segev, M.: Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007)ADSCrossRefGoogle Scholar
- Suchkov, S.V., Ngaffo, F.F., Jiotsa, A.K., Tikeng, A.D., Kofane, T.C., Kivshar, Y.S., Sukhorukov, A.A.: Non-Hermitian trimers: PT-symmetry versus pseudo-Hermiticity. New J. Phys. 18, 065005 (2016)ADSCrossRefGoogle Scholar
- Szameit, A., Garanovich, I.L., Heinrich, M., Sukhorukov, A.A., Dreisow, F., Pertsch, T., Nolte, S., Tunnermann, A., Kivshar, Y.S.: Observation of defect-free surface modes in opticalwaveguide arrays. Phys. Rev. Lett. 101, 203902 (2008)ADSCrossRefGoogle Scholar
- Teimourpour, M.H., Rahman, A., Srinivasan, K., El-Ganainy, R.: Non-hermitian engineering of synthetic saturable absorbers for applications in photonics. Phys. Rev. Appl. 7, 014015 (2017)ADSCrossRefGoogle Scholar
- Weimann, S., Kremer, M., Plotnik, Y., Lumer, Y., Nolte, S., Makris, K.G., Segev, M., Rechtsman, M.C., Szameit, A.: Topologically protected bound states in photonic paritytime-symmetric crystals. Nat. Mater. 16, 433–438 (2017)ADSCrossRefGoogle Scholar
- Wiersma, D.S., Bartolini, P., Lagendijk, A., Righini, R.: Localization of light in a disordered medium. Nature 390, 671–673 (1997)ADSCrossRefGoogle Scholar
- Xu, Y.L., Fegadolli, W.S., Gan, L., Lu, M.H., Liu, X.P., Li, Z.Y., Scherer, A., Chen, Y.F.: Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice. Nat. Commun. 7, 11319 (2016)ADSCrossRefGoogle Scholar
- Zhang, X., Chai, J., Huang, J., Chen, Z., Li, Y., Malomed, B.A.: Discrete solitons and scattering of lattice waves in guiding arrays with a nonlinear PT -symmetric defect. Opt. Express 22, 13927–13929 (2014)ADSCrossRefGoogle Scholar