Advertisement

Effect of loss on transverse localization of light in 1D optical waveguide array in the presence of Kerr-type nonlinearity

  • M. Khazaei NezhadEmail author
  • D. Mirshamsi
  • F. Asadollah Zarif
  • H. Rastegar Moghaddam Rezaeiun
Article
  • 18 Downloads

Abstract

In this paper we have comprehensive study on the interplay among radiation loss, transverse disorder (diagonal and off-diagonal) and Kerr-type nonlinearity on the light propagation in 1D array of optical waveguides. Our numerical results demonstrate the presence of three distinguished regimes of transverse light expansion at different propagation distances. At short propagation distance, the Kerr-type nonlinearity are dominated and results in the transverse localization of light through the self-trapping mechanism. Radiation loss, causes the light escape from the injected guides, affect the light expansion in middle distance via broadening the light beam width. At longer distance the disorder terms led to the transverse localization of light, again. Also, we compared the propagation of light in edge and middle modes in the presence of the above effects. Our results show that the propagation distance of first localized regime for edge modes is larger than the middle modes since the edge modes can exchange energy with one of the left or right waveguides, while for middle modes there are two ways for energy exchange. Therefore the discrete diffraction can be diminished the nonlinear effects in middle modes faster than the edge modes.

Keywords

Diagonal and off-diagonal disorder Radiation loss Kerr-type nonlinearity Edge and middle modes Waveguide array 

Notes

References

  1. Aceves, A.B., Angelis, C.D., Peschel, T., Muschall, R., Lederer, F., Trillo, S., Wabnitz, S.: Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays. Phys. Rev. E 53, 1172–1189 (1996)ADSCrossRefGoogle Scholar
  2. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)ADSCrossRefGoogle Scholar
  3. Chen, Z., Huang, J., Chai, J., Zhang, X., Li, Y., Malomed, B.A.: Discrete solitons in self-defocusing systems with PT-symmetric defects. Phys. Rev. A 91, 053821 (2015)ADSCrossRefGoogle Scholar
  4. Christodoulides, D.N., Joseph, R.I.: Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988)ADSCrossRefGoogle Scholar
  5. Dikopoltsev, A., Shaham, A., Pick, A., Sheinfux, H.H., Segev, M.: Coaction of disorder and PT-symmetry in deep subwavelength multilayers. Front. Opt. JTu4A.45 (2019).  https://doi.org/10.1364/FIO.2019.JTu4A.45
  6. Eichelkraut, T., Heilmann, R., Weimann, S., Stützer, S., Dreisow, F., Christodoulides, D.N., Nolte, S., Szameit, A.: Mobility transition from ballistic to diffusive transport in non-Hermitian lattices. Nat. Commun. 4, 2533 (2013)ADSCrossRefGoogle Scholar
  7. Eisenberg, H.S., Silberberg, Y., Morandotti, R., Boyd, A.R., Aitchison, J.S.: Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998)ADSCrossRefGoogle Scholar
  8. Garanovich, I.G., Sukhorukov, A.A., Kivshar, Y.S.: Defect-free surface states in modulated photonic lattices. Phys. Rev. Lett. 100, 203904 (2008)ADSCrossRefGoogle Scholar
  9. Garanovich, I.L., Longhi, S., Sukhorukov, A.A., Kivshar, Y.S.: Light propagation and localization in modulated photonic lattices and waveguides. Phys. Rep. 518, 1–79 (2012)ADSCrossRefGoogle Scholar
  10. Golshani, M., Weimann, S., Jafari, K., Khazaei Nezhad, M., Langari, A., Bahrampour, A.R., Eichelkraut, T., Mahdavi, S.M., Szameit, A.: Impact of loss on the wave dynamics in photonic waveguide lattices. Phys. Rev. Lett. 113, 123903 (2014)ADSCrossRefGoogle Scholar
  11. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)ADSCrossRefGoogle Scholar
  12. Kalozoumis, P.A., Morfonios, C.V., Diakonos, F.K., Schmelcher, P.: PT -symmetry breaking in waveguides with competing loss-gain pairs. Phys. Rev. A 93, 063831 (2016)ADSMathSciNetCrossRefGoogle Scholar
  13. Khazaei Nezhad, M., Bahrampour, A.R., Golshani, M., Mahdavi, S.M., Langari, A.: Phase transition to spatial Bloch-like oscillation in squeezed photonic lattices. Phys. Rev. A 88, 023801 (2013)ADSCrossRefGoogle Scholar
  14. Khazaei Nezhad, M., Golshani, M., Bahrampour, A.R., Mahdavi, S.M.: Effect of Kerr nonlinearity on the transverse localization of light in 1D array of optical waveguides with off-diagonal disorder. Opt. Commun. 294, 299–304 (2013)ADSCrossRefGoogle Scholar
  15. Khazaei Nezhad, M., Golshani, M., Mirshamsi, D.: Impact of loss on the light propagation in 1D optical waveguide array in the presence of Kerr-type nonlinearity. Opt. Commun. 405, 387–393 (2017)ADSCrossRefGoogle Scholar
  16. Lagendijk, A., van Tiggelen, B., Wiersma, D.S.: Fifty years of Anderson localization. Phys. Today 62, 24–29 (2009)CrossRefGoogle Scholar
  17. Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008)ADSCrossRefGoogle Scholar
  18. Longhi, S.: Quantum-optical analogies using photonic structures. Laser Photon. Rev. 3, 243–261 (2009)ADSCrossRefGoogle Scholar
  19. Morandotti, R., Peschel, U., Aitchison, J.S., Eisenberg, H.S., Silberberg, Y.: Dynamics of discrete solitons in optical waveguide arrays. Phys. Rev. Lett. 83, 2726–2729 (1998)ADSCrossRefGoogle Scholar
  20. Raedt, H.D., Lagendijk, A., Vriest, P.D.: Transverse localization of light. Phys. Rev. Lett. 62, 47–50 (1989)ADSCrossRefGoogle Scholar
  21. Saleh, B.E.A., Teich, M.C.: Fundamental of Photonics, 2nd edn. Wiley, New York, pp. 152–190 (2007)Google Scholar
  22. Schwartz, T., Bartal, G., Fishman, S., Segev, M.: Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007)ADSCrossRefGoogle Scholar
  23. Suchkov, S.V., Ngaffo, F.F., Jiotsa, A.K., Tikeng, A.D., Kofane, T.C., Kivshar, Y.S., Sukhorukov, A.A.: Non-Hermitian trimers: PT-symmetry versus pseudo-Hermiticity. New J. Phys. 18, 065005 (2016)ADSCrossRefGoogle Scholar
  24. Szameit, A., Garanovich, I.L., Heinrich, M., Sukhorukov, A.A., Dreisow, F., Pertsch, T., Nolte, S., Tunnermann, A., Kivshar, Y.S.: Observation of defect-free surface modes in opticalwaveguide arrays. Phys. Rev. Lett. 101, 203902 (2008)ADSCrossRefGoogle Scholar
  25. Teimourpour, M.H., Rahman, A., Srinivasan, K., El-Ganainy, R.: Non-hermitian engineering of synthetic saturable absorbers for applications in photonics. Phys. Rev. Appl. 7, 014015 (2017)ADSCrossRefGoogle Scholar
  26. Weimann, S., Kremer, M., Plotnik, Y., Lumer, Y., Nolte, S., Makris, K.G., Segev, M., Rechtsman, M.C., Szameit, A.: Topologically protected bound states in photonic paritytime-symmetric crystals. Nat. Mater. 16, 433–438 (2017)ADSCrossRefGoogle Scholar
  27. Wiersma, D.S., Bartolini, P., Lagendijk, A., Righini, R.: Localization of light in a disordered medium. Nature 390, 671–673 (1997)ADSCrossRefGoogle Scholar
  28. Xu, Y.L., Fegadolli, W.S., Gan, L., Lu, M.H., Liu, X.P., Li, Z.Y., Scherer, A., Chen, Y.F.: Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice. Nat. Commun. 7, 11319 (2016)ADSCrossRefGoogle Scholar
  29. Zhang, X., Chai, J., Huang, J., Chen, Z., Li, Y., Malomed, B.A.: Discrete solitons and scattering of lattice waves in guiding arrays with a nonlinear PT -symmetric defect. Opt. Express 22, 13927–13929 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Khazaei Nezhad
    • 1
    Email author
  • D. Mirshamsi
    • 1
  • F. Asadollah Zarif
    • 1
  • H. Rastegar Moghaddam Rezaeiun
    • 1
  1. 1.Department of Physics, Faculty of SciencesFerdowsi University of MashhadMashhadIran

Personalised recommendations