Design and analysis of a plasmonic demultiplexer based on band-stop filters using double-nanodisk-shaped resonators

  • Leila Hajshahvaladi
  • Hassan Kaatuzian
  • Mohammad DanaieEmail author


In this paper, a two-channel plasmonic wavelength demultiplexer (PWDM) based on band-stop filters (BSF) using double-nanodisk-shaped resonators is proposed. The structure is numerically simulated using finite difference time domain method. First, a BSF is considered for modeling which supports three modes. Then, the effect of various structural parameters of the proposed PWDM is studied on the transmission properties in detail. The results show that the transmission properties of our PWDM are highly dependent on geometric parameters. The proposed structure provides a single-mode spectrum on each of the output ports with a maximum quality factor as high as 105 (FWHM = 7.7 nm). To this end, we illustrate that the concerning published research in this field, the significant privilege of our proposed PWDM structure is in terms of its good transmission efficiency, lowest FWHM and highest quality factor. Hence, such an arrangement is easy to fabricate and it has the potential for use in all-optical ultra-compact circuits and devices.


Plasmonic demultiplexer Plasmonic filter Metal–insulator–metal waveguide Nanodisk resonator Finite difference time-domain method Surface plasmon polariton 



  1. Armaghani, S., Khani, S., Danaie, M.: Design of all-optical graphene switches based on a Mach–Zehnder interferometer employing optical Kerr effect. Superlattices Microstruct. 135, 106244 (2019)Google Scholar
  2. Ayata, M., et al.: High-speed plasmonic modulator in a single metal layer. Science 358(6363), 630–632 (2017)ADSGoogle Scholar
  3. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003). ADSCrossRefGoogle Scholar
  4. Bouchal, P., Dvořák, P., Babocký, J., Bouchal, Z., Ligmajer, F., Hrtoň, M., Křápek, V., Faßbender, A., Linden, S., Chmelík, R., Šikola, T.: High-resolution quantitative phase imaging of plasmonic metasurfaces with sensitivity down to a single nanoantenna. Nano Lett. 19(2), 1242–1250 (2019)ADSGoogle Scholar
  5. Chen, C.-H., Liao, K.-S.: 1xN plasmonic power splitters based on metal-insulator-metal waveguides. Opt. Express 21(4), 4036–4043 (2013)ADSMathSciNetGoogle Scholar
  6. Danaee, E., Geravand, A., Danaie, M.: Wide-band low cross-talk photonic crystal waveguide intersections using self-collimation phenomenon. Opt. Commun. 431, 216–228 (2019a)ADSGoogle Scholar
  7. Danaee, E., Geravand, A., Danaie, M.: Wide-band low cross-talk photonic crystal waveguide intersections using self-collimation phenomenon. Opt. Commun. 431, 216–228 (2019b)ADSGoogle Scholar
  8. Danaie, M., Shahzadi, A.: Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics. (2019). CrossRefGoogle Scholar
  9. Drezet, A., et al.: Plasmonic crystal demultiplexer and multiports. Nano Lett. 7(6), 1697–1700 (2007)ADSMathSciNetGoogle Scholar
  10. Enoch, S., Bonod, N.: Plasmonics: From Basics to Advanced Topics, vol. 167. Springer, Berlin (2012)Google Scholar
  11. Fang, Y., et al.: Branched silver nanowires as controllable plasmon routers. Nano Lett. 10(5), 1950–1954 (2010)ADSGoogle Scholar
  12. Geng, X.-M., et al.: Tunable plasmonic wavelength demultiplexing device using coupled resonator system. IEEE Photonics J. 8(3), 1–8 (2016)MathSciNetGoogle Scholar
  13. Geravand, A., Danaie, M., Mohammadi, S.: All-optical photonic crystal memory cells based on cavities with a dual-argument hysteresis feature. Opt. Commun. 430, 323–335 (2019)ADSGoogle Scholar
  14. Ghodsi, H., Kaatuzian, H., Pashaki, E.R.: Semi-classical analysis and design of quantum dot based electrically pumped plasmonic nanolaser. arXiv preprint arXiv:1808.10586 (2018)
  15. Ghodsi, H., Kaatuzian, H., Pashaki, E. R.: Analysis and design of a Germanium multi-quantum well metal strip nanocavity plasmon laser. arXiv preprint arXiv:1904.04208 (2019)
  16. Ghorbanian, A., Kashani, A.M., Javan, A.M.: The effects of silver slabs in nanodisk resonator of plasmonic tunable band-pass filter. Optik-Int. J. Light Electron Opt. 127(4), 1884–1888 (2016)Google Scholar
  17. Hajshahvaladi, L., Kaatuzian, H., Danaie, M.: Design and simulation of infrared a photonic crystal band pass filters for fiber optics communication. In: 2017 Iranian Conference on Electrical Engineering (ICEE), IEEE (2017)Google Scholar
  18. Johnson, P.B., Christy, R.-W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972). ADSCrossRefGoogle Scholar
  19. Khaleque, A., Hattori, H.T.: Plasmonic electro-absorption modulator and polarization selector. J. Mod. Opt. 64(12), 1164–1174 (2017)ADSGoogle Scholar
  20. Khani, S., Danaie, M., Rezaei, P.: Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt. Commun. 420, 147–156 (2018a)ADSGoogle Scholar
  21. Khani, S., Danaie, M., Rezaei, P.: Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt. Eng. 57(10), 1–11 (2018b). CrossRefGoogle Scholar
  22. Khani, S., Danaie, M., Rezaei, P.: Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides. Plasmonics 4(1), 53–62 (2019a)Google Scholar
  23. Khani, S., Danaie, M., Rezaei, P.: Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods. Phys. E Low-dimensional Syst. Nanostruct. 113, 25–34 (2019b)ADSGoogle Scholar
  24. Koushkaki, H.R., Akhlaghi, M.: Investigating the optical nand gate using plasmonic nano-spheres. Opt. Quantum Electron. 47(11), 3637–3645 (2015)Google Scholar
  25. Kumar, S., Singh, L., Chen, N.-K.: All-optical bit magnitude comparator device using metal–insulator–metal plasmonic waveguide. Opt. Eng. 56(12), 1–6 (2017). CrossRefGoogle Scholar
  26. Li, H., Jiao, R-z: Plasmonic band-stop filters based on tooth structure. Opt. Commun. 439, 201–205 (2019)ADSGoogle Scholar
  27. Liu, H., et al.: A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators. Opt. Commun. 334, 164–169 (2015)ADSGoogle Scholar
  28. Livani, A.M., Kaatuzian, H.: Design and simulation of an electrically pumped Schottky-junction-based plasmonic amplifier. Appl. Opt. 54(9), 2164–2173 (2015)ADSGoogle Scholar
  29. Livani, A.M., Kaatuzian, H.: Modulation-frequency analysis of an electrically pumped plasmonic amplifier. Plasmonics 12(1), 27–32 (2017)Google Scholar
  30. Lu, H., Yue, Z., Zhao, J.: Multiple plasmonically induced transparency for chip-scale bandpass filters in metallic nanowaveguides. Opt. Commun. 414, 16–21 (2018)ADSGoogle Scholar
  31. Moazzam, M.K., Kaatuzian, H.: Design and investigation of N-type metal/insulator/semiconductor/metal structure two-port electro-plasmonic addressed routing switch. Appl. Opt. 54(20), 6199–6207 (2015)ADSGoogle Scholar
  32. Moradi, M., Danaie, M., Orouji, A.A.: Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt. Quantum Electron. 51(5), 1–18 (2019). CrossRefGoogle Scholar
  33. Nasirifar, R., Danaie, M., Dideban, A.: Dual channel optical fiber refractive index sensor based on surface plasmon resonance. Optik 186, 194–204 (2019)ADSGoogle Scholar
  34. Nurmohammadi, T., Abbasian, K., Yadipour, R.: A proposal for a demultiplexer based on plasmonic metal–insulator–metal waveguide-coupled ring resonator operating in near-infrared spectrum. Optik 142, 550–556 (2017)ADSGoogle Scholar
  35. Pannipitiya, A., et al.: Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt. Express 18(6), 6191–6204 (2010)ADSGoogle Scholar
  36. Pashaki, E.R., Kaatuzian, H., Livani, A.M.: Design and simulation of a low dark current metal/silicon/metal integrated plasmonic detector. arXiv preprint arXiv:1811.05093 (2018)
  37. Pashaki, E.R., Kaatuzian, H., Livani, A.M.: Hydrodynamic analysis and responsivity improvement of a metal/semiconductor/metal plasmonic detector. arXiv preprint arXiv:1901.10735 (2019a)
  38. Pashaki, E.R., et al.: Design and investigation of a balanced silicon-based plasmonic internal-photoemission detector. Appl. Phys. B 125(1), 1–9 (2019b). CrossRefGoogle Scholar
  39. Pav, M.R., et al.: Ultracompact double tunable two-channel plasmonic filter and 4-channel multi/demultiplexer design based on aperture-coupled plasmonic slot cavity. Opt. Commun. 437, 285–289 (2019)ADSGoogle Scholar
  40. Rafiee, E., Negahdari, R., Emami, F.: Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy. Photonics Nanostructures-Fundam. Appl. 33, 21–28 (2019)ADSGoogle Scholar
  41. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application. Plasmonics 12(4), 999–1006 (2017)Google Scholar
  42. Rosenzveig, T., Hermannsson, P.G., Leosson, K.: Modelling of polarization-dependent loss in plasmonic nanowire waveguides. Plasmonics 5(1), 75–77 (2010)Google Scholar
  43. Setayesh, A., Mirnaziry, S.R., Abrishamian, M.S.: Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator. J. Opt. 13(3), 1–7 (2011). CrossRefGoogle Scholar
  44. Shahbazyan, T.V., Stockman, M.I.: Plasmonics: Theory and Applications. Springer, Berlin (2013)Google Scholar
  45. Shi, L., et al.: Plasmonic filter with highly selective wavelength in a fixed dimension based on the loaded rectangular ring cavity. Opt. Commun. 439, 125–128 (2019)ADSGoogle Scholar
  46. Sukharenko, V., Dorsinville, R., Mynbaev, D.: Plasmonic modulation and demodulation structure for the future optical WDM devices in communication system. Solid-State Electron. 155, 159–162 (2019)ADSGoogle Scholar
  47. Taheri, A.N., Kaatuzian, H.: Simulation and design of a submicron ultrafast plasmonic switch based on nonlinear doped silicon MIM waveguide. J. Comput. Commun. 1(07), 23–26 (2013). CrossRefGoogle Scholar
  48. Taheri, A.N., Kaatuzian, H.: Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on asymmetric metal–insulator–metal stub filters. Appl. Opt. 53(28), 6546–6553 (2014)ADSGoogle Scholar
  49. Taheri, A.N., Kaatuzian, H.: Numerical investigation of a nano-scale electro-plasmonic switch based on metal-insulator-metal stub filter. Opt. Quantum Electron. 47(2), 159–168 (2015)Google Scholar
  50. Wei, Z., et al.: Optical band-stop filter and multi-wavelength channel selector with plasmonic complementary aperture embedded in double-ring resonator. Photonics Nanostructures-Fundam. Appl. 23, 45–49 (2017)ADSGoogle Scholar
  51. Xiang, D., Li, W.: MIM plasmonic waveguide splitter with tooth-shaped structures. J. Mod. Opt. 61(3), 222–226 (2014)ADSGoogle Scholar
  52. Xie, Y.-Y., et al.: Theoretical investigation of a plasmonic demultiplexer in MIM waveguide crossing with multiple side-coupled hexagonal resonators. IEEE Photonics J. 8(5), 1–12 (2016)Google Scholar
  53. Yun, B., Hu, G., Cui, Y.: Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity. Plasmonics 8(2), 267–275 (2013)Google Scholar
  54. Zafar, R., Chauhan, P., Salim, M., Singh, G.: Metallic slit–loaded ring resonator-based plasmonic demultiplexer with large crosstalk. Plasmonics 14(4), 1013–1017 (2019)Google Scholar
  55. Zavvari, M., Taleb Hesami Azar, M., Arashmehr, A.: Tunable band-stop plasmonic filter based on square ring resonators in a metal–insulator–metal structure. J. Mod. Opt. 64(20), 2221–2227 (2017)ADSGoogle Scholar
  56. Zhang, Z., et al.: Numerical investigation of a branch-shaped filter based on metal-insulator-metal waveguide. Plasmonics 6(4), 773 (2011)Google Scholar
  57. Zhang, Z., et al.: Plasmonic filter and demultiplexer based on square ring resonator. Appl. Sci. 8(3), 1–10 (2018). ADSCrossRefGoogle Scholar
  58. Zhao, W., Lu, Z.: Nanoplasmonic optical switch based on Ga–Si 3N 4-Ga waveguide. Opt. Eng. 50(7), 1–7 (2011). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Photonics Research Laboratory, Electrical Engineering DepartmentAmirkabir University of TechnologyTehranIran
  2. 2.Electrical and Computer Engineering FacultySemnan UniversitySemnanIran

Personalised recommendations