Influences of the impurity and magnetic field on the probability density and the period of the asymmetric Gaussian potential qubit

  • Xu-Fang Bai
  • Wei XinEmail author
  • Eerdunchaolu


The eigenenergies and eigenfunctions of the ground and first-excited states of an electron, which is coupled to an LO-phonon in a quantum dot with an asymmetric Gaussian (AG) potential, Coulomb bound potential and the magnetic field was studied by using Lee-Low-Pines transformation and Pekar variation method. A single qubit can be realized in this two-level quantum system. Numerical results show that the probability density of electrons in the qubit oscillates with changing the time, the well width and the well depth the AG potential. The probability density obviously fluctuates with changes in the magnetic-field cyclotron (MFC) frequency, the dielectric constant (DC) ratio and the electron–phonon coupling (EPC) strength, respectively, which is not conducive to constructing a suitable qubit. The oscillation period of the qubit decreases with increasing the DC ratio, EPC strength and the MFC frequency, respectively, which has an adverse effect on the survival time of qubit.


Qubit Asymmetric Gaussian potential Probability density Oscillation period Magnetic field Hydrogen-like impurity 



This project was supported by the National Natural Science Foundation of China (Grant No. 51902085), the Nature Science Foundation of Hebei Province, China (Grant Nos. E2013407119 and E2019407123) and the Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No. 2019MS01011).


  1. Chen, Y.-J., Xiao, J.-L.: Influences of the temperature on the parabolic quantum dot qubit in the magnetic field. J. Low Temp. Phys. 186, 241–249 (2017)ADSCrossRefGoogle Scholar
  2. Fotue, A.-J., Fobasso, M.-F.-C., Kenfack, S.-C., Tiotsop, M., Djomou, J.-R.-D., Ekosso, C.-M., Nguimeya, G.-P., Danga, J.-E., Keumo Tsiaze, R.-M., Fai, L.-C.: Tunable potentials and decoherence effect on polaron in nanostructures. Eur. Phys. J. Plus 131, 205–220 (2016)CrossRefGoogle Scholar
  3. Gu, J., Liang, J.-Q.: Energy spectrun analysis of donor-center quantum dot. Acta Phys. Sin. 54, 5335–5338 (2005). (in Chinese) Google Scholar
  4. Lee, T.-D., Low, F.-M., Pines, D.: The motion of slow electrons in a crystal. Phys. Rev. 90, 297–302 (1953)ADSMathSciNetCrossRefGoogle Scholar
  5. Li, S.-S., Long, G.-L., Bai, F.-S., Feng, S.-L., Zheng, H.-Z.: Quantum computing. Proc. Natl. Acad. Sci. U.S.A. 98, 11847–11848 (2001)ADSCrossRefGoogle Scholar
  6. Pekar, S.-I.: Untersuchungen über die Elektronen-theorie der Kristalle. Akademie Verlag, Berlin (1954)zbMATHGoogle Scholar
  7. Sun, Y., Ding, Z.-H., Xiao, J.-L.: Effects of temperature and magnetic field on the coherence time of a RbCl parabolic quantum dot qubit. J. Electron. Mater. 46, 439–442 (2017)ADSCrossRefGoogle Scholar
  8. Tiotsop, M., Fotue, A.-J., Talla, P.-K., Kenfack, S.-C., Fautso Kuiate, G., Fotsin, H., Fai, L.-C.: Polaron in an asymmetric cylindrical quantum dot qubit under an electromagnetic field. Iran. J. Sci. Technol. Trans. Sci. 42, 933–940 (2018)CrossRefGoogle Scholar
  9. Wang, X.-Q., Xiao, J.-L.: The effect of magnetic field on RbCl asymmetric quantum dot qubit. Iran. J. Sci. Technol. Trans. Sci. 41, 273–276 (2017)CrossRefGoogle Scholar
  10. Xiao, J.-L.: The effect of electric field on RbCl asymmetric Gaussian potential quantum well qubit. Int. J. Theor. Phys. 55, 147–154 (2016)CrossRefGoogle Scholar
  11. Xiao, W., Xiao, J.-L.: Effects of temperature and electric field on the coherence time of a RbCl parabolic quantum dot qubit. Int. J. Theor. Phys. 55, 2936–2941 (2016)CrossRefGoogle Scholar
  12. Xiao, W., Qi, B., Xiao, J.-L.: Impurity effect of asymmetric Gaussian potential quantumwell qubit. J. Low Temp. Phys. 179, 166–174 (2015)ADSCrossRefGoogle Scholar
  13. Xie, W.-F.: Two interacting electrons in a spherical Gaussian confining potential quantum well. Commun. Theor. Phys. 42, 151–154 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Electronic InformationInner Mongolia University for NationalitiesTongliaoChina
  2. 2.Institute of Condensed Matter PhysicsHebei Normal University of Science & TechnologyQinhuangdaoChina

Personalised recommendations