High performance graphene-like thinly layered graphite based visible light photodetector

  • T. M. K. Thandavan
  • Pujiyanto
  • H. AhmadEmail author


In this work, the drop casting method is utilized to obtain a thin graphene-like graphite layer as a photodetection layer on a SiO2/Si substrate, and its performance is characterized to determine its potential use in commercial applications. The thin layer is formed by first synthesizing graphite soot from a butane flame before being turned into a liquid solution and drop-casted onto the substrate to form a thin graphene-like graphite film. Field emission scanning electron microscope and Raman vibrational mode analyses indicate that the fabricated graphene-like graphite layer has characteristics similar to the graphene. The graphene-like graphite photodetector demonstrates a narrow photoresponse from 530 to 680 nm, covering visible sources from green to red. The responsivity and external quantum efficiency of the device under the illumination of red laser 660 nm is found to be around 148 mA W−1 and 27.8% respectively and is faster than that reported for similar systems using graphene and reduced graphene oxide previously. A fast response time of 83.7 and 28 µs at a modulation frequency of 1.0 and 10000 Hz respectively from the graphene-like thinly layered graphite photodetector shows potential application for the development of low-cost carbon-based photodetectors in near future.


Responsivity Photodetector Graphite Butane flame Frequency modulation 



Funding for this work was provided for by the Ministry of Higher Education, Malaysia under the Grants LRGS (2015) NGOD/UM/KPT and GA 010 – 2014 (ULUNG) as well as the University of Malaya under the Grants RU 013 – 2018 and HiCoE Phase II Funding.


  1. Ahmad, H., Thandavan, T.: Characterization of graphene oxide/silicon dioxide/p-type silicon heterojunction photodetector towards infrared 974 nm illumination. Opt. Quantum Electron. 49(12), 395 (2017a)Google Scholar
  2. Ahmad, H., Thandavan, T.M.K.: The influence of aqueous sodium dodecyl sulphate solution in the photoresponsivity of nitrogen doped graphene oxide photodetector. Opt. Mater. 73, 441–448 (2017b). ADSCrossRefGoogle Scholar
  3. An, Y., Behnam, A., Pop, E., Ural, A.: Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions. Appl. Phys. Lett. 102(1), 013110 (2013)ADSCrossRefGoogle Scholar
  4. Chen, H., Yu, P., Zhang, Z., Teng, F., Zheng, L., Hu, K., Fang, X.: Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small 12(42), 5809–5816 (2016)CrossRefGoogle Scholar
  5. Cheng, J., Zhang, Y., Guo, R.: ZnO microtube ultraviolet detectors. J. Cryst. Growth 310(1), 57–61 (2008)ADSCrossRefGoogle Scholar
  6. Chitara, B., Krupanidhi, S., Rao, C.: Solution processed reduced graphene oxide ultraviolet detector. Appl. Phys. Lett. 99(11), 113114 (2011)ADSCrossRefGoogle Scholar
  7. Cooper, D.R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., Majlis, N., Massicotte, M., Vandsburger, L., Whiteway, E.: Experimental review of graphene. ISRN Condens. Matter Phys. 2012, 1–56 (2012)CrossRefGoogle Scholar
  8. Echtermeyer, T.J., Nene, P., Trushin, M., Gorbachev, R.V., Eiden, A.L., Milana, S., Sun, Z., Schliemann, J., Lidorikis, E., Novoselov, K.S.: Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors. Nano Lett. 14(7), 3733–3742 (2014)ADSCrossRefGoogle Scholar
  9. Fang, J., Wang, D., DeVault, C.T., Chung, T.-F., Chen, Y.P., Boltasseva, A., Shalaev, V.M., Kildishev, A.V.: Enhanced graphene photodetector with fractal metasurface. Nano Lett. 17(1), 57–62 (2016)ADSCrossRefGoogle Scholar
  10. Freitag, M., Low, T., Xia, F., Avouris, P.: Photoconductivity of biased graphene. Nat. Photonics 7(1), 53 (2013)ADSCrossRefGoogle Scholar
  11. Furchi, M.M., Polyushkin, D.K., Pospischil, A., Mueller, T.: Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 14(11), 6165–6170 (2014)ADSCrossRefGoogle Scholar
  12. Gabor, N.M., Song, J.C., Ma, Q., Nair, N.L., Taychatanapat, T., Watanabe, K., Taniguchi, T., Levitov, L.S., Jarillo-Herrero, P.: Hot carrier–assisted intrinsic photoresponse in graphene. Science 334(6056), 648–652 (2011)ADSCrossRefGoogle Scholar
  13. Galashev, A.E.E., Rakhmanova, O.R.: Mechanical and thermal stability of graphene and graphene-based materials. Phys. Usp. 57(10), 970 (2014)ADSCrossRefGoogle Scholar
  14. Gan, X., Shiue, R.-J., Gao, Y., Meric, I., Heinz, T.F., Shepard, K., Hone, J., Assefa, S., Englund, D.: Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883 (2013)ADSCrossRefGoogle Scholar
  15. Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499(7459), 419–425 (2013)CrossRefGoogle Scholar
  16. Ghahari, F., Xie, H.-Y., Taniguchi, T., Watanabe, K., Foster, M.S., Kim, P.: Enhanced thermoelectric power in graphene: violation of the Mott relation by inelastic scattering. Phys. Rev. Lett. 116(13), 136802 (2016)Google Scholar
  17. Hishiyama, Y., Irumano, H., Kaburagi, Y., Soneda, Y.: Structure, Raman scattering, and transport properties of boron-doped graphite. Phys. Rev. B 63(24), 245406 (2001)Google Scholar
  18. Lai, S.K., Tang, L., Hui, Y.Y., Luk, C.M., Lau, S.P.: A deep ultraviolet to near-infrared photoresponse from glucose-derived graphene oxide. J. Mater. Chem. C 2(34), 6971–6977 (2014)CrossRefGoogle Scholar
  19. Li, X., Zhu, M., Du, M., Lv, Z., Zhang, L., Li, Y., Yang, Y., Yang, T., Li, X., Wang, K.: High detectivity graphene–silicon heterojunction photodetector. Small 12(5), 595–601 (2016)CrossRefGoogle Scholar
  20. Liu, Y., Chen, Y.: Synthesis of large scale graphene oxide using plasma enhanced chemical vapor deposition method and its application in humidity sensing. J. Appl. Phys. 119(10), 103301 (2016)ADSCrossRefGoogle Scholar
  21. Liu, C.-H., Chang, Y.-C., Norris, T.B., Zhong, Z.: Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9(4), 273–278 (2014)ADSCrossRefGoogle Scholar
  22. Morita, M., Ohmi, T., Hasegawa, E., Teramoto, A.: Native oxide growth on silicon surface in ultrapure water and hydrogen peroxide. Jpn. J. Appl. Phys. 29(12A), L2392 (1990)ADSCrossRefGoogle Scholar
  23. Morozov, S., Novoselov, K., Katsnelson, M., Schedin, F., Elias, D., Jaszczak, J.A., Geim, A.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(1), 016602 (2008)Google Scholar
  24. Nan, H.Y., Ni, Z.H., Wang, J., Zafar, Z., Shi, Z.X., Wang, Y.Y.: The thermal stability of graphene in air investigated by Raman spectroscopy. J. Raman Spectrosc. 44(7), 1018–1021 (2013)ADSCrossRefGoogle Scholar
  25. Quiroga-González, E., Carstensen, J., Glynn, C., O’Dwyer, C., Föll, H.: Pore size modulation in electrochemically etched macroporous p-type silicon monitored by FFT impedance spectroscopy and Raman scattering. Phys. Chem. Chem. Phys. 16(1), 255–263 (2014)CrossRefGoogle Scholar
  26. Russell, J.P.: Raman scattering in silicon. Appl. Phys. Lett. 6(11), 223–224 (1965)ADSCrossRefGoogle Scholar
  27. Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, U.M.: Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60(18), 2204–2206 (1992)ADSCrossRefGoogle Scholar
  28. Spirito, D., Coquillat, D., De Bonis, S.L., Lombardo, A., Bruna, M., Ferrari, A.C., Pellegrini, V., Tredicucci, A., Knap, W., Vitiello, M.S.: High performance bilayer-graphene terahertz detectors. Appl. Phys. Lett. 104(6), 061111 (2014)ADSCrossRefGoogle Scholar
  29. Thandavan, T.M.K., Gani, S.M.A., Wong, C.S., Nor, R.M.: Enhanced photoluminescence and Raman properties of Al-doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass. PLoS ONE 10(3), e0121756 (2015). CrossRefGoogle Scholar
  30. Urich, A., Unterrainer, K., Mueller, T.: Intrinsic response time of graphene photodetectors. Nano Lett. 11(7), 2804–2808 (2011)ADSCrossRefGoogle Scholar
  31. Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009)ADSCrossRefGoogle Scholar
  32. Xu, Z., Hu, G.: Simple and green synthesis of monodisperse silver nanoparticles and surface-enhanced Raman scattering activity. RSC Adv. 2(30), 11404–11409 (2012)CrossRefGoogle Scholar
  33. Ye, D., Wu, S.-Q., Yu, Y., Liu, L., Lu, X.-P., Wu, Y.: Patterned graphene functionalization via mask-free scanning of micro-plasma jet under ambient condition. Appl. Phys. Lett. 104(10), 103105 (2014)ADSCrossRefGoogle Scholar
  34. Zhang, X., He, D., Yi, L., Zhao, S., He, J., Wang, Y., Zhao, H.: Electron dynamics in MoS2-graphite heterostructures. Nanoscale 9(38), 14533–14539 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Photonics Research CentreUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Physics, Faculty of Science and TechnologyAirlangga UniversitySurabayaIndonesia
  3. 3.Physics Department, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations