Advertisement

A simple design of highly birefringent and nonlinear photonic crystal fiber with ultra-flattened dispersion

  • Bai Yu
  • Hao RuiEmail author
Article
  • 29 Downloads

Abstract

We present a compressed hexagonal photonic crystal fiber (CH-PCF) based on a simple structure with ultra-flattened dispersion, high birefringence and nonlinearity. The propagation characteristics are studied accurately by utilizing full vector finite-element method (FEM). Numerical results indicate that the birefringence of 1.59 × 10−2 was obtained with high nonlinear coefficient of 42.58 W−1 km−1(X) and 52.80 W−1 km−1(Y) at an effective wavelength of 1.55 μm. Furthermore, CH-PCF presents an ultra-flattened dispersion with variation of ± 3.4 ps/nm/km(X) and ± 1.6 ps/nm/km(Y) over 1.3 μm to 1.8 μm (0.5 μm bandwidth), respectively. In addition, this circular-hole structure can be fabricated conveniently at most easy compared with complex designs, which is an advantage for practical applications such as dispersion compensation and nonlinear optics application.

Keywords

Photonic crystal fiber Ultra-flattened dispersion High birefringence High nonlinearity 

Notes

Acknowledgements

This work has been supported in part by the Youth Project on Basic Research of YanShan University (Grant No. 16LGA011).

References

  1. Abdur Razzak, S.M., Namihira, Y., Begum, F.: Ultra-flattened dispersion photonic crystal fibre. Electron. Lett. 43, 615–617 (2007)CrossRefGoogle Scholar
  2. Amouzad Mahdiraji, G., Chow, D.M., Sandoghchi, S.R., et al.: Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. Fiber Integr. Opt. 33, 85–104 (2014)ADSCrossRefGoogle Scholar
  3. Animesh, B., Roy, C.K., Borhan, M.M., et al.: Highly birefringent, highly negative dispersion compensating photonic crystal fiber. Appl. Opt. 56, 7256–7726 (2017)CrossRefGoogle Scholar
  4. Bo, Y., Yong, L., Li, S.: Characteristics analysis of photonic crystal fiber with octagonal hybrid cladding. Opt. Int. J. Light Electron Opt. 127, 9828–9832 (2016)CrossRefGoogle Scholar
  5. Brechet, F., et al.: Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method. Opt. Fiber Technol. Mater. Devices Syst. 6, 181–191 (2000)ADSCrossRefGoogle Scholar
  6. Broeng, J., et al.: Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5, 305–330 (1999)ADSCrossRefGoogle Scholar
  7. Faisal, M., Bala, A., Chowdhury, K.R., Mia, M.B.: Highly birefringent large negative dispersion flattened photonic crystal fibre for broadband residual dispersion compensation. J. Mod. Opt. 65, 1577–1583 (2018)ADSMathSciNetCrossRefGoogle Scholar
  8. Gui, F., Jiang, P., Yang, H., et al.: Design for a high birefringence photonic crystal fiber with multimode and low loss. Appl. Opt. 57, 6–13 (2018)ADSCrossRefGoogle Scholar
  9. Habib, M.S., Khandker, E.: Highly birefringent photonic crystal fiber with ultra-flattened negative dispersion over S + C+L + U bands. Appl. Opt. 54, 2786–2789 (2015)ADSCrossRefGoogle Scholar
  10. Habib, M.S., Motin, M.A., Hasan, M.I., et al.: Dispersion and confinement loss control with decagonal photonic crystal fibers for wideband transmission systems. In: International Conference on Informatics, Electronics and Vision (ICIEV), pp. 1–4 (2013)Google Scholar
  11. Hasan, M.I., Mahmud, R.R., Morshed, M., et al.: Ultra-flattened negative dispersion for residual dispersion compensation using soft glass equiangular spiral photonic crystal fiber. J. Mod. Opt. 1681–1687 (2016)ADSCrossRefGoogle Scholar
  12. Hu, D.J.J., Shum, P.P., Lu, C., et al.: Dispersion-flattened polarization-maintaining photonic crystal fiber for nonlinear applications. Opt. Commun. 282, 4072–4076 (2009)ADSCrossRefGoogle Scholar
  13. Kim, B.H., Kee, C.S., Lee, C.G., et al.: Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion. Opt. Express 20, 1385–1391 (2012)ADSCrossRefGoogle Scholar
  14. Lee, Y.S., Lee, C.G., Kim, S.: Double cladding photonic crystal fiber based on dual lattice structure: high birefringence and negative flat dispersion. In: Lasers and Electro-Optics Pacific Rim (2015)Google Scholar
  15. Li, X., Liu, P., Xu, Z., et al.: Design of a pentagonal photonic crystal fiber with high birefringence and large flattened negative dispersion. Appl. Opt. 54, 7350–7357 (2015)ADSCrossRefGoogle Scholar
  16. Liu, D., Tong, W., Liu, S., et al.: Study on the fabrication techniques of photonic crystal fiber and PCF based structures. Proc. SPIE Int. Soc. Opt. Eng. 5722, 1207–1213 (2005)Google Scholar
  17. Liu, M., Hou, J., Yang, X., et al.: Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity. Chin. Phys. B 27, 014206 (2018)ADSCrossRefGoogle Scholar
  18. Mahmud, R.R., Razzak, S.M.A., Hasan, M.I., Habib, M.S.: A new photonic crystal fiber design on the high negative ultra-flattened dispersion for both X and Y polarization modes. Opt. Int. J. Light Electron Opt. 127, 8670–8677 (2016)CrossRefGoogle Scholar
  19. Mortensen, N.A., et al.: Improved large-mode-area endlessly single-mode photonic crystal fibers. Opt. Lett. 28, 393–395 (2003)ADSCrossRefGoogle Scholar
  20. Ortigosa-Blanch, A., et al.: Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000)ADSCrossRefGoogle Scholar
  21. Poli, F., Cucinotta, A., Selleri, S., et al.: Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers. IEEE Photonics Technol. Lett. 16, 1065–1067 (2004)ADSCrossRefGoogle Scholar
  22. Prabu, K., Malavika, R.: Highly birefringent photonic crystal fiber with hybrid cladding. Opt. Fiber Technol. 47, 21–26 (2019)ADSCrossRefGoogle Scholar
  23. Roberts, P.J., Mangan, B.J., Sabert, H., et al.: Control of dispersion in photonic crystal fibers. J. Opt. Fiber Commun. Rep. 313–339 (2005)Google Scholar
  24. Russell, P.: Photonic crystal fibers. Science 299, 358–362 (2003)ADSCrossRefGoogle Scholar
  25. Sidhik, S., Ittiarah, J.V., Pal, M.: All-circular hole microstructured fiber with ultra-high birefringence and reduced confinement loss. Measurement 147, 106895 (2019)CrossRefGoogle Scholar
  26. Saitoh, K., Koshiba, M., Hasegawa, T., et al.: Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Express 11, 843–852 (2003)ADSCrossRefGoogle Scholar
  27. Xu, H., Wu, J., Xu, K., et al.: Ultra-flattened chromatic dispersion control for circular photonic crystal fibers. J. Opt. 13, 055405 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Key Laboratory on Microstructural Material Physics of Hebei Province, College of SciencesYanshan UniversityQinhuangdaoPeople’s Republic of China

Personalised recommendations