The Most Reliable and Precise Model to Determine Schottky Barrier Height and Photoelectron Yield Spectroscopy

  • Liu ChangshiEmail author


Schottky barrier height (SBH), \(\varphi\), plays a crucial role in the design of electronic and photo-electronic devices. In order to reckon SBH via internal photoemission (IPE), the technique is through extrapolating square root of IPE yield-and cube root of IPE yield-photon energy plots to zero before this work, this work was motivated by the most reliable and precise model to determine the SBH via IPE. A phenomenological model for connection IPE quantum yield and photon energy has been successfully established based on Fermi–Dirac distribution. The results of experimental observations fitted via the model indicate that the modeled quantum yield agrees well with experimental data. This model emphasizes the threshold of photon energy for calculating SBH, and the SBH of InN/GaN, p-type GaP/p-type Si, Pt/GaP, Au/GaAs, Si/SiO2 and Cu/SiO2 were obtained with high reliability after the method had been applied.


Determination Schottky barrier height Junction Internal photoemission yield Photon energy 



  1. Afanas’ev, V.V., Stesmans, A.: Polytype determination at the SiC–SiO2 interface by internal electron photoemission scattering spectroscopy. Mater. Sci. Eng. B 102(1–3), 308–312 (2003)CrossRefGoogle Scholar
  2. Afanas’ev, V.V., Stesmans, A.: Internal photoemission at interfaces of high-κ insulators with semiconductors and metals. J. Appl. Phys. 102, 081301 (2007)ADSCrossRefGoogle Scholar
  3. Afanas’ev, V.V., Stesmans, A., Brammertz, G., Delabie, A., Sionke, S., Mahony, A., Povey, I.M., Pemble, M.E., Connor, E., Hurley, P.K., Newcomb, S.B.: Band offsets at interfaces of (100)InxGa1−xAs (0 ≤ x ≺ 0.53) with Al2O3 and HfO2. Microelectron Eng 86(7–9), 1550–1553 (2009)CrossRefGoogle Scholar
  4. Afanasev, V.V., Badylevich, M., Houssa, M., Stesmans, A., Aggrawal, G., Campbell, S.A.: Electron energy band alignment at the NiO/SiO2 interface. Appl. Phys. Lett. 96, 172105 (2010)ADSCrossRefGoogle Scholar
  5. Afanas’ev, V.V., Chou, H.Y., Stesmans, A., Merckling, C., Sun, X.: Band offsets at the (100) GaSb/Al2O3 interface from internal electron photoemission study. Microelectron. Eng. 88(7), 1050–1053 (2011)CrossRefGoogle Scholar
  6. Almeida, J., Dell’Orto, T., Coluzza, C., Margaritondo, G., Bergoss, O., SpajeT, M., Coujon, D.: Novel spectromicroscopy: Pt–GaP studies by spatially resolved internal photoemission with near-field optics. Appl. Phys. Lett. 69, 2361 (1996)ADSCrossRefGoogle Scholar
  7. Aslan, B., Turan, B., Liu, H.C., Baribeau, J.M., Buchanan, M., Chow-Chong, P.: Double-barrier long wavelength SiGe/Si heterojunction internal photoemission infrared photodetectors. Appl. Phys. B 78, 225–228 (2004)ADSCrossRefGoogle Scholar
  8. Aslan, B., Turan, R., Liu, H.C.: Study on the long wavelength SiGe/Si hetero-junction internal-photoemission infrared photodetectors. Infrared Phys. Technol. 47(1–2), 195–205 (2005)ADSCrossRefGoogle Scholar
  9. Coluzza, C., Tuncel, E., Staehli, J.-L., Baudat, P.A., Margaritondo, G., McKinley, J.T., Barnes, A.A.V., Albridge, R.G., Tolk, N.H., Martin, D., Morier-Genoud, F., Dupuy, C., Rudra, A., Ilegems, M.: Interface measurements of hetero-junction band lineups with the Vanderbilt free-electron laser. Phys. Rev. B 46, 12834 (1992)ADSCrossRefGoogle Scholar
  10. Falub, M.C., Shi, M., Krempasky, J., Hricovini, K., Mukovskii, Y.M., Neumann, M., Galakhov, V.R., Patthey, L.: Photonenergy dependent photoemission study of La0.7Sr0.3MnO3. Surf. Sci. 575(1–2), 29–34 (2005)ADSCrossRefGoogle Scholar
  11. Felnhofer, D., Gusev, E.P., Jamison, P., Buchanan, D.A.: Charge trapping and detrapping in HfO2 high-κ MOS capacitors using internal photoemission. Microelectron. Eng. 80, 58–61 (2005)CrossRefGoogle Scholar
  12. Fowler, R.H.: The analysis of photoelectrical sensitivity curves for clean metals at various temperatures. Phys. Rev. 38, 45–56 (1931)ADSCrossRefGoogle Scholar
  13. Heiblum, M., Nathan, M.I., Eizenberg, M.: Energy band discontinuities in hetero-junctions measured by internal photoemission. Surf. Sci. 174, 318–319 (1986)ADSCrossRefGoogle Scholar
  14. Kittel, C.: Introduction to Solid State Physics, 7th edn, pp. 216–218. Wiley (ASIA), Singapore (1996)Google Scholar
  15. Mahmood, Z.H.: Determination of InN–GaN heterostructure band offsets from internal photoemission measurements. Appl. Phys. Lett. 91(15), 152108–152111 (2007)ADSCrossRefGoogle Scholar
  16. Okumura, T., Tu, K.N.: Electrical characterization of Schottky contacts of Au, Al, Gd, and Pt on n-type and p-type GaAs. J. Appl. Phys. 61, 2955 (1987)ADSCrossRefGoogle Scholar
  17. Powell, R.J.: Interface barrier energy determination from voltage dependence of photoinjected currents. J. Appl. Phys. 41, 2424 (1970)ADSCrossRefGoogle Scholar
  18. Sakata, I., Yamanaka, M., Kawanami, H.: Characterization of hetero-junctions in crystalline-silicon-based solar cells by internal photoemission. Sol. Energy Mater. Sol. Cells 93(6–7), 737–741 (2009)CrossRefGoogle Scholar
  19. Willisa, B.G., Langb, D.V.: Oxidation mechanism of ionic transport of copper in SiO2 dielectrics. Thin Solid Films 467, 284–293 (2004)ADSCrossRefGoogle Scholar
  20. Wu, R., Schmidt, M., Schopke, A., Fuhs, W.: Solid-phase epitaxy of CaSi2 on Si(111) and the Schottky-barrier height of CaSi2/Si(111). Appl. Surf. Sci. 190, 437–440 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nan Hu CollegeJiaxing UniversityZhejiangPeople’s Republic of China

Personalised recommendations