Worst crosstalk analysis in heterogeneous and trench assisted heterogeneous multicore fiber for different core counts and layouts

  • Umar FarooqueEmail author
  • Dharmendra Kumar Singh
  • Rakesh Ranjan


In order to obtain appreciably low worst crosstalk level in high core count multicore fiber, heterogeneous MCF with different core configurations and layouts have been investigated analytically using coupled mode equation. The variations in worst crosstalk behavior with respect to the bending radius, core configurations, core layouts, and outer cladding thickness have been analyzed. Further, the core count dependent variations in worst crosstalk level, core pitch, and peak bending radius in different core layouts have been presented. It has been observed that the selection of core configuration, core layout, and outer cladding thickness have significant impact on the reduction in worst crosstalk level. For example, in 12-core normal-index heterogeneous MCF with SLS structure, the core Configuration 1 can provide the worst crosstalk level reduced by 7.09 dB and 16.92 dB in comparison to the other two core configurations, i.e., Configuration 2, and Configuration 3, respectively. Further, for the same core count with TA Configuration 1, SLS core layout can achieve the reduced worst crosstalk level in comparison with circular ORS and DRS, hexagonal ORS and DRS respectively by 24.62 dB, 25.86 dB, 28.87 dB and 30.64 dB.


Crosstalk Heterogeneous Trench assisted Core layouts Outer cladding thickness Peak bending radius 



This research work is a part of Early Career Research Award project (ECR/2017/000735) sponsored by Science and Engineering Research Board, Department of Science and Technology, Govt. of India. We also thank to National Institute of Technology Patna, Bihar, India and Muzaffarpur Institute of Technology, Muzaffarpur, Bihar, India and Visvesvaraya PhD Scheme, MeitY, Govt. of India for providing the immense support and encouragement.


  1. Amma, Y., Sasaki, Y., Takenaga, K., Matsuo, S., Tu, J., Saitoh, K., Koshiba, M., Morioka, T., Miyamoto, Y.: High-density multicore fiber with heterogeneous core arrangement. In: Proceeding of Optical Fiber Communications Conference and Exhibition, Los Angeles, CA, pp. 1–3 (2015)Google Scholar
  2. Arikawa, M., Ito, T., de Gabory, E.L.T., Fukuchi, K.: Crosstalk reduction with bidirectional signal assignment on square lattice structure 16-core fiber over WDM transmission for gradual upgrade of SMF-based lines. J. Lightwave Technol. 34(8), 1908–1915 (2016)ADSCrossRefGoogle Scholar
  3. Fujisawa, T., Amma, Y., Sasaki, Y., Matsuo, S., Aikawa, K., Saitoh, K., Koshiba, M.: Crosstalk analysis of heterogeneous multicore fibers using coupled-mode theory. IEEE Photonics J. 9(5), 1–8 (2017)CrossRefGoogle Scholar
  4. Hayashi, T.: Multi-core optical fibers realizing high density/capacity transmission. In: Proceeding of IEEE CPMT Symposium Japan, Kyoto, pp. 169–172 (2016)Google Scholar
  5. Koshiba, M.: Design aspects of multicore optical fibers for high-capacity long haul transmission. In: Proceeding of Microwave Photonics and the 9th Asia-Pacific Microwave Photonics Conference, Sendai, pp. 318–323 (2014)Google Scholar
  6. Koshiba, M., Saitoh, K., Takenaga, K., Matsuo, S.: Multicore fiber design and analysis: coupled-mode theory and coupled-power theory. Opt. Express 19(26), B102–B111 (2011)CrossRefGoogle Scholar
  7. Koshiba, M., Siatoh, K., Takenaga, K., Matsuo, S.: Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers. IEEE Photonics J. 4(5), 1987–1995 (2012)ADSCrossRefGoogle Scholar
  8. Kumar, D., and Ranjan, R.: Crosstalk suppression using trench-assisted technique in 9-core homogeneous multi core fiber. In: Proceeding of 14th IEEE India Council International Conference (INDICON), Roorkee, pp. 1–4 (2017)Google Scholar
  9. Matsuo, S., Takenaga, K., Arakawa, Y., Sasaki, Y., Taniagwa, S., Saitoh, K., Koshiba, M.: Large-effective-area ten-core fiber with cladding diameter of about 200 μm. Opt. Lett. 36, 4626–4628 (2011)ADSCrossRefGoogle Scholar
  10. Matsuo, S., Takenaga, K., Sasaki, Y., Amma, Y., Saito, S., Saitoh, K., Matsui, T., Nakajima, K., Mizuno, T., Takara, H., Miyamoto, Y., Morioka, T.: High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems. J. Lightwave Technol. 34(6), 1464–1475 (2016)ADSCrossRefGoogle Scholar
  11. Mizuno, T., Shibahara, K., Ye, F., Sasaki, Y., Amma, Y., Takenaga, K., Jung, Y., Pulverer, K., Ono, H., Abe, Y., Yamada, M., Saitoh, K., Matsuo, S., Aikawa, K., Bohn, M., Richardson, D.J., Miyamoto, Y., Morioka, T.: Long-haul dense space-division multiplexed transmission over low-crosstalk heterogeneous 32-core transmission line using a partial recirculating loop system. J. Lightwave Technol. 35(3), 488–498 (2017)ADSCrossRefGoogle Scholar
  12. Nakazawa, M.: Ultrahigh spectral efficiency systems-pushing the limits of multi-level modulation, multicore fiber, and multimode control. In: Proceeding of Opto-Electronics and Communication Conference and Australian Conference on Optical Fibre Technology, Melbourne, VIC, pp. 597–599 (2014)Google Scholar
  13. Puttnam, B. J., Luís, R. S., Klaus, W., Sakaguchi, J., Mendinueta, J. M. D., Awaji, Y., Wada, N., Tamura, Y., Hayashi, T., Hirano, M., Marciante, J.: 2.15 Pb/s transmission using a 22 core homogeneous single-mode multicore fiber and wideband optical comb. In: Proceeding of European Conference on Optical Communication, Valencia, pp. 1–3 (2015)Google Scholar
  14. Saitoh, K., Matsuo, S.: Multicore fiber technology. J. Lightwave Technol. 34(1), 55–66 (2016)ADSCrossRefGoogle Scholar
  15. Sakamoto, T., Matsui, T., Saitoh, K., Saitoh, S., Takenaga, K., Matsuo, S., Tobita, Y., Hanzawa, N., Nakajima, K., Yamamoto, F.: Few-mode multi-core fiber with highest core multiplicity factor. In: Proceeding of European Conference on Optical Communication (ECOC), Valencia, pp. 1–3 (2015)Google Scholar
  16. Sano, A., Takara, H., Kobayashi, T., Kawakami, H., Kishikawa, H., Nakagawa, T., Miyamoto, Y., Abe, Y., Ono, H., Shikama, K., Nagatani, M., Mori, T., Sasaki, Y., Ishida, I., Takenaga, K., Matsuo, S., Saitoh, K., Koshiba, M., Yamada, M., Masuda, H., Morioka, T.: 409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving. Opt. Express 21(14), 16777–16783 (2013)ADSCrossRefGoogle Scholar
  17. Sasaki, Y., Amma, Y., Takenaga, K., Matsuo, S., Saitoh, K., Koshiba, M.: Investigation of crosstalk dependencies on bending radius of heterogeneous multicore fiber. In: Proceeding of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, CA, pp. 1–3 (2013)Google Scholar
  18. Takara, H., Sano, A., Kobayashi, T., Kubota, H., Kawakami, H., Matsuura, A., Miyamoto, Y., Abe, Y., Ono, H., Shikama, K., Goto, Y., Tsujikawa, K., Sasaki, Y., Ishida, I., Takenaga, K., Matsuo, S., Saitoh, K., Koshiba, M., Morioka, T.: 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency. In: Proceeding of European conference and Exhibition on Optical Communication, Amsterdam, Netherlands, Paper Th.3.C.1 (2012)Google Scholar
  19. Takenaga, K., Multicore fiber with dual-ring structure. In: Proceeding of OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology, Melbourne, VIC, pp. 51–53 (2014)Google Scholar
  20. Tu, J., Saitoh, K., Koshiba, M., Matsuo, S.: Design and analysis of large-effective-area heterogeneous trench assisted multicore fiber. Opt. Express 20(14), 15157–15170 (2012)ADSCrossRefGoogle Scholar
  21. Tu, J., Long, K., Saitoh, K.: An efficient core selection method for heterogeneous trench assisted multicore fiber. IEEE Photonics Technol. Lett. 28(7), 810–813 (2016)ADSCrossRefGoogle Scholar
  22. Xie, X., Tu, J., Zhou, X., Long, K., Saitoh, K.: Design and optimization of 32-core rod/trench assisted square-lattice structured single mode multicore fiber. Opt. Express 25(5), 5119–5132 (2017)ADSCrossRefGoogle Scholar
  23. Ye, F., Tu, J., Saitoh, K., Morioka, T.: Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers. Opt. Express 22, 23007–23018 (2014)ADSCrossRefGoogle Scholar
  24. Ye, F., Tu, J., Saitoh, K., Takenaga, K., Matsuo, S., Takara, H., Morioka, T.: Design of homogeneous trench assisted multicore fibers based on analytical model. J. Lightwave Technol. 34(18), 4406–4416 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Umar Farooque
    • 1
    • 2
    Email author
  • Dharmendra Kumar Singh
    • 1
  • Rakesh Ranjan
    • 1
  1. 1.Optical Fiber Communication and Photonics Laboratory, Department of Electronics and Communication EngineeringNational Institute of TechnologyPatnaIndia
  2. 2.Department of Electronics and Communication EngineeringMuzaffarpur Institute of TechnologyMuzaffarpurIndia

Personalised recommendations