An efficient hybrid visible light communication/radio frequency system for vehicular applications

  • Marwa M. Abdel Momen
  • Heba A. Fayed
  • Moustafa H. AlyEmail author
  • Nour Eldin Ismail
  • Amr Mokhtar


This paper focuses on improving the traffic system for Intelligent Transportation System (ITS) by using an imaging receiver instead of photodiode as a single receiver. Here, two simple traffic models have been proposed and analyzed in order to optimize the design characteristics such as signal to noise ratio, required power, received information, bit error rate, and modulation technique. First, a standalone visible light communication (VLC) with different modulation techniques is considered. The On–OFF Keying, L-Pulse Position Modulation (L-PPM), and Inverse L-Pulse Position Modulation (I-L-PPM) are investigated. Then, a hybrid communication system utilizing VLC and radio frequency (RF) is proposed for position-based services. The VLC/RF system combines the benefits of both systems and offers long distance transmission which is an important concern in ITS and in order to improve the link reliability in infrastructure to vehicle communications. This means that the probability of having a communication link between the transmitter and receiver is maintained without interruption. Then, the performance is finally evaluated. The obtained simulation results show a considerable increase in the received information using the proposed hybrid VLC/RF system compared to a VLC system.


Traffic system Vehicular applications Radio frequency (RF) Visible light communications (VLC) Code division multiple access (CDMA) 



  1. Akanegawa, M., Tanaka, Y., Nakagawa, M.: Basic study on traffic information system using LED traffic lights. IEEE Trans. Intell. Transp. Syst. 2(4), 197–203 (2001)CrossRefGoogle Scholar
  2. Barry, J.R.: Wireless Infrared Communications. Kluwer Academic Press, Boston, MA (1994)CrossRefGoogle Scholar
  3. Basnayaka, D.A., Haas, H.: Hybrid RF and VLC systems: Improving user data rate performance of VLC systems. In: Proceedings of IEEE Vehicular Technology Conference Spring (VTC-Spring), Glasgow, UK, pp 1–5 (2015)Google Scholar
  4. Basnayaka, D.A., Haas, H.: Design and analysis of a hybrid radio frequency and visible light communication system. IEEE Trans. Commun. 65(10), 4334–4347 (2017)Google Scholar
  5. Cailean, A.M., Cagneau, B., Chassagne, L., Popa, V., Dimian, M.: Evaluation of the noise effects on visible light communications using Manchester and Miller coding. In: Proceeding IEEE International Conference on Development and Application Systems, Suceava, Romania, pp. 85–89 (2014)Google Scholar
  6. Che Wook, H.B., Komine, T., Haruyama, S., Nakagawa, M.: Visible light communication with LED-based traffic lights using 2-dimensional image sensor. In: Proceeding of the IEEE Consumer Communications and Networking Conference, Las Vegas, USA. pp. 243–247 (2006)Google Scholar
  7. Chowdhury, H., Katz, M.: Cooperative data download on the move in indoor hybrid (radio-optical) WLAN-VLC hotspot coverage. Trans. Emerg. Telecommun. Technol. 25(6), 666–677 (2014)CrossRefGoogle Scholar
  8. Gfeller, F.R., Bapst, U.: Wireless in-house data communication via diffuse infrared radiation. Proc. IEEE 67(11), 1474–1486 (1979)CrossRefGoogle Scholar
  9. Goldsmith, A.: Wireless Communications. Cambridge University Press, New York (2005)CrossRefGoogle Scholar
  10. Jungnickel, V., Forck, A., Haustein, T., Kruger, U., Phol, V., Helmolt, C.: Electronic tracking for wireless infrared communications. IEEE Trans. Wirel. Commun. 2(5), 989–999 (2003)CrossRefGoogle Scholar
  11. Kahn, M., Barry, R.: Wireless infrared communications. Proc. IEEE 85(2), 265–298 (1997)CrossRefGoogle Scholar
  12. Kashef, M., Ismail, M., Abdallah, M., Qaraqe, K.A., Serpedin, E.: Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks. IEEE J. Sel. Areas Commun. 34(4), 883–893 (2016)CrossRefGoogle Scholar
  13. Kazemi, H., Uysal, M., Touati, F.: Outage Analysis of hybrid FSO/RF systems based on finite-state Markov chain modeling. In: Proceeding IEEE International Workshop in Optical Wireless Communications (IWOW), Funchal, Portugal. vol. 3, pp. 11–15 (2014)Google Scholar
  14. Liu, J., Chan, P.W.C., Ng, D.W.K., Lo, E.S., Shimamoto, S.: Hybrid visible light communications in intelligent transportation systems with position based services. In: Proceedings of 3rd IEEE Workshop on Optical Wireless Communications, Anaheim, CA, USA, pp. 1254–1259 (2012)Google Scholar
  15. Namdar, M., Basgumus, A., Tsiftsis, Th, Altuncu, A.: Outage and BER performances of indoor relay-assisted hybrid RF/VLC systems. IET Commun. 12(17), 2104–2109 (2018)CrossRefGoogle Scholar
  16. Ndjiongue, A.R., Ferreira, H.C.: An overview of outdoor visible light communications. Emerging Telecommun. Technol. 29(7), 1–15 (2018)Google Scholar
  17. Papadimitratos, P., Fortelle, A.La, Evenssen, K., Brignolo, R., Cosenza, S.: Vehicular communication systems enabling technologies, applications, and future outlook on intelligent transportation. IEEE Commun. Mag. 47(11), 84–95 (2009)CrossRefGoogle Scholar
  18. Personick, S.D.: Receiver design for digital fiber optic communications systems. I. Bell Syst. Tech. J. 52(6), 843–874 (1973)CrossRefGoogle Scholar
  19. Smith, R.G., Personick, S.D.: Receiver Design for Optical Fiber Communication Systems. Semiconductor Devices for Optical Communication. Springer, New York (1980)Google Scholar
  20. Wada, M., Endo, T., Fujii, T., Tanimoto, M.: Road-to-Vehicle visible light communication using LED traffic light. In: Proceedings of IEEE Intelligent Vehicles Symposium, Las Vegas, USA, pp. 601–606 (2005)Google Scholar
  21. Wang, F., Wang, Z., Qian, C., Dai, L., Yang, Z.: Efficient vertical handover scheme for heterogeneous VLC-RF systems. J. Opt. Commun. Netw. 7(12), 1172–1180 (2015)CrossRefGoogle Scholar
  22. Zhuang, Y., Hua, L., Qi, L., Cao, P., Cao, Y., Wu, Y., Thompson, J., Haas, H.: A survey of positioning systems using visible LED lights. IEEE Commun. Surv. Tutor. 20(3), 1–28 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Marwa M. Abdel Momen
    • 1
  • Heba A. Fayed
    • 2
  • Moustafa H. Aly
    • 2
    Email author
  • Nour Eldin Ismail
    • 1
  • Amr Mokhtar
    • 1
  1. 1.Electrical Engineering Department, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt
  2. 2.Electronics and Communication Engineering Department, College of Engineering and TechnologyArab Academy for Science, Technology and Maritime TransportAlexandriaEgypt

Personalised recommendations