Advertisement

A 2 × 1 all-optical multiplexer using Kerr nonlinear nano-plasmonic switch

  • Sajjad Bashiri
  • Kiazand FasihiEmail author
Article
  • 74 Downloads

Abstract

In this paper, a novel surface plasmon polariton based 2 × 1 multiplexer, which is based on an adder module and an all-optical controllable nano-plasmonic switching module is presented. It is shown that by applying a pump light, the transmissions of the input signals into the output waveguide can be controlled. The operation of the proposed device is investigated through the use of coupled-mode theory and finite-difference time-domain method. In the proposed adder module, the transmissions of the input signals at the working wavelengths are about 0.7. Based on the simulation results, by applying a pump light intensity of 150 KW/cm2 the transmissions of input signals alter with the extinction ratio of 22.04 dB, which shows a significant switching effect. For a pump light intensity of 150 KW/cm2 the switching times of input signals are measured about 560 fs. It is expected that the proposed 2 × 1 multiplexer can be used in all-optical signal processing, nano-plasmonic circuits, communication, etc.

Keywords

All-optical multiplexer Coupled-mode theory (CMT) Finite-difference time-domain (FDTD) Nano-plasmonic switch Kerr nonlinearity Racetrack-shaped ring resonator 

Notes

References

  1. Abad, J.B., Fan, S., Johnson, S.G., Joannopoulos, J.D., Soljacic, M.: Modeling nonlinear optical phenomena in nanophotonics. IEEE J. Lightwave Technol. 9, 2539–2546 (2007)CrossRefGoogle Scholar
  2. Bana, X., Pang, X., Li, X., Hu, B., Guo, Y., Zheng, H.: A nonlinear plasmonic waveguide based all-optical bidirectional switching. Opt. Commun. 406, 124–127 (2018)ADSCrossRefGoogle Scholar
  3. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)ADSCrossRefGoogle Scholar
  4. Binfeng, Y., Guohua, H., Ruohu, Z., Yiping, C.: Design of a compact and high sensitive refractive index sensor base on metal–insulator–metal plasmonic bragg grating. Opt. Express 22, 28662–28670 (2014)ADSCrossRefGoogle Scholar
  5. Birr, T., Zywietz, U., Chhantyal, P., Chichkov, B.N., Reinhardt, C.: Ultrafast surface plasmon-polariton logic gates and half-adder. Opt. Express 23, 31756–31765 (2015)ADSCrossRefGoogle Scholar
  6. Chen, F., Yao, D.: Tunable multiple all-optical switch based on multi-nano resonator coupled waveguide systems containing kerr material. Opt. Commun. 312, 143–147 (2014)ADSCrossRefGoogle Scholar
  7. Dolatabady, A., Granpayeh, N.: All-optical logic gates in plasmonic metal–insulator–metal nanowaveguide with slot cavity resonator. J. Nanophotonics 112, 26001–26008 (2017)CrossRefGoogle Scholar
  8. Fasihi, K., Mohammadnejad, S.: Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback. Opt. Express 17, 8983–8997 (2009)ADSCrossRefGoogle Scholar
  9. Hu, F., Yi, H., Zhou, Z.: Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt. Express 19, 4848–4855 (2011)ADSCrossRefGoogle Scholar
  10. Li, Q., Wang, T., Su, Y., Yan, M., Qiu, M.: Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18, 8367–8382 (2010)ADSCrossRefGoogle Scholar
  11. Lin, X., Huang, X.: Tooth-shaped plasmonic waveguide fllters with nanometeric sizes. Opt. Lett. 33, 2874–2876 (2008)ADSCrossRefGoogle Scholar
  12. Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.P.: Microring resonator channel dropping filters. IEEE J. Lightwave Technol. 15, 998–1005 (1997)ADSCrossRefGoogle Scholar
  13. Liu, H., Gao, Y., Zhu, B., Ren, G., Jian, S.: A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators. Opt. Commun. 334, 164–169 (2015)ADSCrossRefGoogle Scholar
  14. Lu, H., Liu, X., Wang, L., Gong, Y., Mao, D.: Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 19, 2910–2915 (2011)ADSCrossRefGoogle Scholar
  15. Lu, H., Liu, X., Mao, D., Wang, G.: Plasmonic nanosensor based on fano resonance in waveguide-coupled resonators. Opt. Lett. 37, 3780–3782 (2012)ADSCrossRefGoogle Scholar
  16. Min, C.J., Wang, P., Chen, C.C., Deng, Y., Lu, Y.H., Ming, H., Ning, T.Y., Zhou, Y.L., Yang, G.Z.: All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials. Opt. Lett. 33, 869–871 (2008)ADSCrossRefGoogle Scholar
  17. Nikolajsen, T., Leosson, K., Bozhevolnyi, S.I.: Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 5833–5835 (2013)ADSCrossRefGoogle Scholar
  18. Nozhat, N., Granpayeh, N.: All-optical nonlinear plasmonic ring resonator switches. J. Mod. Opt. 61, 1690–1695 (2014)ADSCrossRefGoogle Scholar
  19. Nurmohammadi, T., Abbasian, K., Yadipour, R.: Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator. Opt. Commun. 410, 142–147 (2018)ADSCrossRefGoogle Scholar
  20. Paul, S., Ray, M.: Analysis of plasmonic subwavelength waveguide-coupled nanostub and its application in optical switching. Appl. Phys. A 122, 1–9 (2016)ADSGoogle Scholar
  21. Piao, X., Yu, S., Park, N.: Control of fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt. Express 20, 18994–18999 (2012)ADSCrossRefGoogle Scholar
  22. Ren, H., Jiang, C., Hu, W., Gao, M., Wang, J.: Photonic crystal channel drop filter with a wavelengthselective reflection micro-cavity. Opt. Express 14, 2446–2458 (2006)ADSCrossRefGoogle Scholar
  23. Tao, J., Huang, X.G., Lin, X.S., Chen, J., Zhang, Q., Jin, X.: Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters. J. Opt. Soc. Am. B 27, 323–327 (2010)ADSCrossRefGoogle Scholar
  24. Tao, J., Wang, Q.J., Huang, X.G.: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6, 753–759 (2011)CrossRefGoogle Scholar
  25. Wahsheh, R.A., Lu, Z., Abushagur, M.A.G.: Nanoplasmonic couplers and splitters. Opt. Express 17, 19033–19040 (2009)ADSCrossRefGoogle Scholar
  26. Wang, X., Jiang, H., Chen, J., Wang, P., Lu, Y., Ming, H.: Optical bistability effect in plasmonic racetrack resonator with high extinction ratio. Opt. Express 19, 19415–19421 (2011a)ADSCrossRefGoogle Scholar
  27. Wang, G., Lu, H., Liu, X., Gong, Y., Wang, L.: Optical bistability in metal–insulator–metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium. Appl. Opt. 50, 5287–5290 (2011b)ADSCrossRefGoogle Scholar
  28. Zhao, W., Ju, D., Jiang, Y.: Pulse controlled all-optical logic gate based on nonlinear ring resonator realizing all fundamental logic operations. Plasmonics 10, 311–317 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Faculty of EngineeringGolestan UniversityGorganIran

Personalised recommendations