First principle study of structural, electronic, optical, and transport properties of ternary compounds NaGaX2 (X = S, Se, and Te) in tetragonal chalcopyrite phase

  • Muhammad Shahzad YaseenEmail author
  • G. MurtazaEmail author
  • R. M. Arif Khalil


Eemploying the all electron full potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) method based on density functional theory (DFT) structural, electronic, optical, and transport properties of compounds NaGaX2 (X = S, Se, and Te) in tetragonal phase have been investigated at ground state. The exchange-correlation effects have been included using the Wu Cohen (WC) generalized gradient approximation (GGA) and modified Becke–Johnson (mBJ) exchange potentials. Enthalpy of formation values ensure that crystal structures are stable in tetragonal chalcopyrite phase. Total and partial density of states, and band structures have been plotted to calculate electronic properties which exhibits direct band gap for all compounds. The electronic band gap of NaGaS2 (2.1 eV) is found to be higher than the electronic band gaps of NaGaSe2 (1.7 eV) and NaGaTe2 (1.2 eV) compounds. Using real and imaginary parts of the dielectric function, optical properties such as refractive index (n), extinction coefficient (k), reflectivity (R), absorption coefficient (α), and energy loss spectrum (L) were determined. Transport properties like Seebeck coefficient, thermal and electrical conductivities, figure of merit, and power factors have also been reported by combining the results from DFT and Boltzmann transport theory. The high absorption peaks in visible and ultraviolet regions of the energy spectrum and direct band gaps of these compounds ensure that three compounds are promising materials for photovoltaic applications.


Density functional theory Band gap engineering Phase stability Direct bandgap semiconductors for photovoltaic cells 



  1. Bai, L., Lin, Z.S., Wang, Z.Z., Chen, C.T.: Mechanism of linear and nonlinear optical effects of chalcopyrites LiGaX2 (X = S, Se, and Te) crystals. J. Appl. Phys. 103, 1 (2008)CrossRefGoogle Scholar
  2. Bilal, M., Banaras Khan, H.A., Rahnamaye Aliabad, M., Maqbool, S.Jalali, Asadabadi, I.Ahmad: Thermoelectric properties of SbNCa3 and BiNCa3 for thermoelectric devices and alternative energy applications. Comput. Phys. Commun. 185, 1394–1398 (2014)ADSCrossRefGoogle Scholar
  3. Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.B.: Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990)ADSCrossRefGoogle Scholar
  4. Chen, D., Liu, Z., Li, J., Han, L.: Fabrication and photoelectrochemical properties of a promising flaky-structured NaInS2 photoelectrode. J. Photochem. Photobiol., A 356, 627–632 (2018)CrossRefGoogle Scholar
  5. Hohenberg, P., Kohn, W.: Density functional theory (DFT). Phys. Rev. 136, B864 (1964)ADSCrossRefGoogle Scholar
  6. Kish, Z.Z., Peresh, E.Y., Lazarev, V.B., Semrad, E.E.: Systematics and the rules of variations in the properties of the AI–BIII–CVI-type compounds. Izv. Akad. Nauk SSSR, Neorg. Mater. 23, 777–784 (1987)Google Scholar
  7. Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2005)zbMATHGoogle Scholar
  8. Kosobutsky, A.V., Basalaev, Y.: “First principles study of electronic structure and optical properties of LiMTe2 (M = Al, Ga, In) crystals. J. Phys. Chem. Solids 71, 854–861 (2010)ADSCrossRefGoogle Scholar
  9. Kubaschewski, O., Alcock, C.B., Spencer, P.J.: Materials Thermochemistry. Pergamon Press Ltd, Headington Hill Hall, Oxford (1993)Google Scholar
  10. Ma, C.-G., Brik, M.G.: First principles studies of the structural, electronic and optical properties of LiInSe2 and LiInTe2 chalcopyrite crystals. Solid State Commun. 203, 69–74 (2015)ADSCrossRefGoogle Scholar
  11. Ma, T.-h., Yang, C.-h., Xie, Y., Sun, L., Lv, W.-q., Wang, R., Ren, Y.-l.: First-principles calculations of the structural, elastic, electronic and optical properties of orthorhombic LiGaS2 and LiGaSe2. Phys. B 405, 363–368 (2010)ADSCrossRefGoogle Scholar
  12. Maeda, T., Wada, T.: First-principles study of electronic structure of CuSbS2 and CuSbSe2 photovoltaic semiconductors. Thin Solid Films 582, 401 (2015)ADSCrossRefGoogle Scholar
  13. Reshak, A.H., Brik, M.G.: Strong second harmonic generation in LiInX2 (X = Se, Te) chalcopyrite crystals as explored by first-principles methods. J. Alloys Compd. 675, 355–363 (2016)CrossRefGoogle Scholar
  14. Sahina, S., Ciftci, Y.O., Colakoglu, K., Korozlu, N.: First principles studies of elastic, electronic and optical properties of chalcopyrite semiconductor ZnSnP2. J. Alloys Compd. 529, 1–7 (2012)CrossRefGoogle Scholar
  15. Salehi, H., Gordanian, E.: Ab initio study of structural, electronic and optical properties of ternary chalcopyrite semiconductors. Mater. Sci. Semicond. Process. 47, 51–56 (2016)CrossRefGoogle Scholar
  16. Sharma, S., Verma, A.S., Jindal, V.K.: First principles studies of structural, electronic, optical, elastic and thermal properties of Ag-chalcopyrites (AgInX2: X = S, Se). Phys. B 438, 97–108 (2014)ADSCrossRefGoogle Scholar
  17. Shay, J.L., Wernick, J.H.: Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications. International Series of Monographs in the Science of the Solid State, vol. 7. Elsevier, Amsterdam (2017)Google Scholar
  18. Shi, L., Jing, H., Qin, Y., Duan, Y., Ling, W., Yang, X., Tang, G.: First-principles study of structural, elastic and lattice dynamical properties of chalcopyrite BeSiV2 and MgSiV2 (V = P, As, Sb). J. Alloys Compd. 611, 210–218 (2014)CrossRefGoogle Scholar
  19. Sibghat-Ullah, Murtaza, G., Khenata, R., Reshak, A.H.: Electronic, optical and bonding properties of MgYZ2 (Y = Si, Ge; Z = N, P) chalcopyrites from first principles. Mater. Sci. Semicond. Process. 26, 79–86 (2014)CrossRefGoogle Scholar
  20. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semi local exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)ADSCrossRefGoogle Scholar
  21. Verma, U.P., Jensen, P., Sharma, M., Singh, P.: Ab initio studies of structural, electronic, optical and thermal properties of CuAlS2 chalcopyrite. Comput. Theor. Chem. 975, 122–127 (2011)CrossRefGoogle Scholar
  22. Weis, J., Schäfer, H., Schoen, G.: New ternary element(I)/element(III)-tellurides and selenides. Z. Naturforsch. 31, 1336–1340 (1976)ADSCrossRefGoogle Scholar
  23. Wu, Z., Cohen, R.E.: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006)ADSCrossRefGoogle Scholar
  24. Xi, L., Yang, J., Lihua, W., Yang, J., Zhang, W.: Band engineering and rational design of high-performance thermoelectric materials by first-principles. J. Materiomics 2, 114–130 (2016)CrossRefGoogle Scholar
  25. Yaseen, M.S., Murtaza, G., Arif Khalil, R.M.: Ab-initio study of Li based chalcopyrite compounds LiGaX2 (X = S, Se, Te) in tetragonal symmetry. Curr. Appl. Phys. 18, 1113–1121 (2018)ADSCrossRefGoogle Scholar
  26. Zhang, X.-Z., Shen, K.-S., Jiao, Z.-Y., Huang, X.-F.: A study of the electronic structures and optical properties of CuXTe2 (X = Al, Ga, In) ternary semiconductors. Comput. Theor. Chem. 1010, 67–72 (2013)CrossRefGoogle Scholar
  27. Zou, D., Xie, S., Liu, Y., Lin, J., Li, J.: First-principles study of thermoelectric and lattice vibrational properties of chalcopyrite CuGaTe2. J. Alloys Compd. 570, 150–155 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Advanced Studies in Physics (CASP)GC UniversityLahorePakistan
  2. 2.Materials Simulation Research Laboratory (MSRL), Department of PhysicsBahauddin Zakariya UniversityMultanPakistan

Personalised recommendations