Advertisement

An analytical model for vertical dual-cavity quantum-dot optical amplifiers

  • Omar QasaimehEmail author
Article
  • 52 Downloads

Abstract

Novel closed-form model for the threshold conditions and the optical gains of vertical dual-cavity semiconductor optical amplifier (VDC-SOA) is derived. Expressions for the transfer functions that relate the average photon density inside the two cavities to the incident photon density are derived. The model is simple, accurate and easy to use for designing dual-wavelength laser amplifiers. Good agreement is obtained between the analytical model and numerical calculations. The transmitted and reflective bistability characteristics of quantum dot VDC-SOA have been investigated. The threshold condition of each mode is expressed in terms of the top-cavity and the bottom-cavity currents. The dual modes \(\lambda_{o}^{ + }\) and \(\lambda_{o}^{ - }\) show different bistability behavior as a function of the top cavity current when the device operates at fixed operating point below the threshold curve. We find that the contrast ratio of mode \(\lambda_{o}^{ + }\) is a weak function of the device currents, and the hysteresis width increases when the top cavity current is increased. For mode \(\lambda_{o}^{ - }\) large contrast ratio and hysteresis width are obtained when the two cavities exhibit equal currents. Our analysis also reveals that the spectral characteristics of mode \(\lambda_{o}^{ + }\) are different from that of mode \(\lambda_{o}^{ - }\).

Keywords

Dual-cavity Analytical model Threshold Optical gain Semiconductor optical amplifier Bistability 

Notes

References

  1. Ababneh, J., Qasaimeh, O.: Simple model for quantum-dot semiconductor optical amplifiers using artificial neural networks. IEEE Trans. Electron Devices 53(7), 1543–1550 (2006)ADSCrossRefGoogle Scholar
  2. Blood, P.: Quantum Efficiency of Quantum Dot Lasers. IEEE J. Sel. Top. Quantum Electron. 23(6), 190060(1)–190060(8) (2017)CrossRefGoogle Scholar
  3. Brunner, M., Gulden, K., Hövel, R., Moser, M., Carlin, J.F., Stanley, R.P., Ilegems, M.: Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser. IEEE Photon. Technol. Lett. 12(10), 1316–1318 (2006)CrossRefGoogle Scholar
  4. Chen, C., Choquette, K.: Analog and digital functionalities of composite resonator vertical cavity lasers. J. Lightw. Technol. 28(7), 1003–1010 (2010)ADSCrossRefGoogle Scholar
  5. Choquette, K., Chen, C., Harren, A., Grasso, D., Plant, D.: Reconfigurable digital functionality of composite resonator vertical Cavity lasers. IEEE J. Quantum Electron. 48(2), 153–159 (2012)ADSCrossRefGoogle Scholar
  6. Dimitriadou, E., Zoiros, K.: All-optical XOR gate using single quantum-dot SOA and optical filter. IEEE J. Lightw. Technol. 31(23), 3813–8321 (2013)ADSCrossRefGoogle Scholar
  7. Gioannini, M., Montrosset, I.: Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers. IEEE J. Quantum Electron. 43(10), 941–949 (2007)ADSCrossRefGoogle Scholar
  8. Huang, Z., Zimmer, M., Hepp, S., Jetter, M., Michler, P.: Optical gain and lasing properties of InP/AlGaInP quantum-dot laser diode emitting at 660 nm. IEEE J. Quantum Electron. 55(2), 2000307(1)–2000307(7) (2019)CrossRefGoogle Scholar
  9. Hurtado, A., Gonzalez-Marcos, A., Martin-Pereda, J.: Modeling reflective bistability in vertical-cavity semiconductor optical amplifiers. IEEE J. Quantum Electron. 41(3), 376–383 (2005)ADSCrossRefGoogle Scholar
  10. Kim, J., Su, H., Minin, S., Chuang, S.: Comparison of linewidth enhancement factor between p-doped and undoped quantum-dot lasers. IEEE Photon. Technol. Lett. 18(9), 1022–1024 (2006)ADSCrossRefGoogle Scholar
  11. Leinonen, T., Morozov, Y., Härkönen, A., Pessa, M.: Vertical external-cavity surface-emitting laser for dual-wavelength generation. IEEE Photon. Technol. Lett. 17(12), 2508–2510 (2005)ADSCrossRefGoogle Scholar
  12. Morozov, Y., Leinonen, T., Härkönen, A., Pessa, M.: Simultaneous dual-wavelength emission from vertical external-cavity surface-emitting laser: a numerical modeling. IEEE J. Quantum Electron. 42(10), 1055–1061 (2006)ADSCrossRefGoogle Scholar
  13. Morozov, Y., Morozov, M.: Intracavity nonlinear frequency down-conversion in a continuous-wave operation regime of a dual-wavelength vertical-external-cavity surface-emitting laser. IEEE J. Sel. Top. Quantum Electron. 19(5), 1702105(1)–1702105(5) (2013)ADSCrossRefGoogle Scholar
  14. Nishi, K., Takemasa, K., Sugawara, M., Arakawa, Y.: Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron. 23(6), 1901007(1)–1901007(7) (2017)CrossRefGoogle Scholar
  15. Norman, J., Jung, D., Zhang, Z., Wan, Y., Liu, S., Shang, C., Herrick, R., Chow, W., Gossard, A., Bowers, J.: A review of high performance quantum dot lasers on silicon. IEEE J. Quantum Electron. 55(2), 2000511(1)–2000511(11) (2019)CrossRefGoogle Scholar
  16. Ohtsuki, T., Matsuura, M.: Wavelength conversion of 25-Gbit/s PAM-4 signals using a quantum-dot SOA. IEEE Photon. Technol. Lett. 30(5), 459–462 (2018)ADSCrossRefGoogle Scholar
  17. Piprek, J., Björlin, S., Bowers, J.: Design and analysis of vertical-cavity semiconductor optical amplifiers. IEEE J. Quantum Electron. 37(1), 127–134 (2001)ADSCrossRefGoogle Scholar
  18. Qasaimeh, O.: Linewidth enhancement factor of quantum dot lasers. Opt. Quant. Electron. 37(5), 495–507 (2005)CrossRefGoogle Scholar
  19. Qasaimeh, O.: Novel tunable bistable quantum-dot vertical-cavity semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 28(14), 1553–1556 (2016)ADSCrossRefGoogle Scholar
  20. Royo, P., Koda, R., Coldren, L.: Vertical cavity semiconductor optical amplifiers: comparison of Fabry–Pérot and rate equation approaches. IEEE J. Quantum Electron. 38(3), 279–284 (2002)ADSCrossRefGoogle Scholar
  21. Sanchez, D., Cerutti, L., Tournié, E.: Mid-IR GaSb-based bipolar cascade VCSELs. IEEE Photon. Technol. Lett. 25(9), 882–884 (2013)ADSCrossRefGoogle Scholar
  22. Scheller, M., Baker, C., Koch, S., Moloney, J., Jones, R.: High power dual-wavelength VECSEL based on a multiple folded cavity. IEEE Photon. Technol. Lett. 29(10), 790–793 (2017)ADSCrossRefGoogle Scholar
  23. Schneider, S., Borri, P., Langbein, W., Woggon, U., Sellin, R., Ouyang, D., Bimberg, D.: Excited-state gain dynamics in InGaAs quantum-dot amplifiers. IEEE Photon.Technol. Lett. 17(10), 2014–2016 (2005)ADSCrossRefGoogle Scholar
  24. Wen, P., Sanchez, M., Gross, M., Esener, S.: Observation of bistability in a vertical-cavity semiconductor optical amplifier (VCSOA). Opt. Express 10(22), 1273–1278 (2002)ADSCrossRefGoogle Scholar
  25. Xia, M., Ghafouri-Shiraz, H.: Quantum transmission line modeling method and its application to quantum dot amplifiers. IEEE J. Quantum Electron. 52(5), 5100107 (2016)CrossRefGoogle Scholar
  26. Young, E., Grasso, D., Lehman, A., Choquette, K.: Dual-channel wavelength-division multiplexing using a composite resonator vertical-cavity laser. IEEE Photon. Technol. Lett. 16(4), 966–968 (2004)ADSCrossRefGoogle Scholar
  27. Zajnulina, M., Lingnau, B., Ludge, K.: Four-wave mixing in quantum-dot semiconductor optical amplifiers: a detailed analysis of the nonlinear effects. IEEE J. Sel. Top. Quantum Electron. 23(6), 3000112(1)–3000112(12) (2017)CrossRefGoogle Scholar
  28. Zhang, W., Yu, S.: Optical flip-flop using bistable vertical-cavity semiconductor optical amplifiers with anti-resonant reflecting optical waveguide. IEEE J. Lightw. Technol. 27(21), 4703–4710 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringJordan University of Science and TechnologyIrbidJordan

Personalised recommendations