Advertisement

Multichannel filter application of a magnetized cold plasma defect in periodic structure of ZnS/TiO2 materials

  • Asish Kumar
  • Khem B. ThapaEmail author
Article
  • 45 Downloads

Abstract

In this article, transmission spectra of multilayer structure of zinc sulfide (ZnS) and titanium dioxide (TiO2) with defect of magnetized cold plasma (MCP) have been calculated theoretically by using characteristics transfer matrix method. The transmission spectra versus frequency have been analyzed for symmetric and asymmetric structure. Due to have a multiple band gaps in the asymmetric structure, we have taken the asymmetric structure for analysis with the parameters of MCP and the thicknesses of the dielectric materials. It is well known that magnetized cold plasma is an abnormal material because the permittivity changes with applied external magnetic field, and shows tunable photonic band gap for permittivity of the MCP. Now, the transmission spectra of the asymmetric structure versus frequency by inserting one or two magnetized cold plasma layer were analyzed with the variation of incident angles, the parameters of MCP, and the thicknesses of ZnS and TiO2 material. The analyzed transmission spectra of asymmetric structure with the variation of electron density, thicknesses of dielectric materials were obtained better results with defect of two plasma layers as compare to the defect of one layer of plasma. These obtained results reveal that the defect of two magnetized cold plasma layers of one dimensional asymmetric structure of ZnS, TiO2 may be used for the tunable multichannel filter at microwave region.

Keywords

Zinc sulfide (ZnS) Titanium oxide (TiO2Magnetized cold plasma (MCP) Defect MCP multilayer structure 

Notes

Acknowledgements

Asish Kumar, Research Scholar, Department of Physics, Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow, acknowledges to UGC, New Delhi for Non-Net UGC fellowship.

References

  1. Aghajamali, A.: Transmittance properties in a magnetized cold plasma and superconductor periodic multilayer. Appl. Opt. 55, 6336–6340 (2016)ADSCrossRefGoogle Scholar
  2. Aly, A.H.: The transmittance of two types of one-dimensional periodic structures. Mater. Chem. Phys. 115(1), 391–394 (2009)CrossRefGoogle Scholar
  3. Aly, A.H.: Metal dielectric periodic structure and defect characterizations. J. Comput. Theor. Nanosci. 9(12), 2045–2051 (2012)CrossRefGoogle Scholar
  4. Aly, A.H., El Sayad, H.A.: Defect mode properties of one dimensional photonic crystal. Phys. B 407(1), 120–125 (2012)ADSCrossRefGoogle Scholar
  5. Aly, A.H., ElSayad, H.A.: Tunability of one dimensional photonic crystals based on Faraday Effect. J. Mod. Opt. (2016).  https://doi.org/10.1080/09500340.2016.1265676 CrossRefGoogle Scholar
  6. Aly, A.H., Mohamed, D.: BSCCO/SrTiO3one dimensional superconducting photonic crystal for many applications. J. Supercond. Nov. Magn. 28, 1699–1703 (2015)CrossRefGoogle Scholar
  7. Aly, A.H., Mohamed D. The optical properties of meta-material superconductor photonic band gap with/without defect layer. J. Supercond. Nov. Mag.1–6 (2018)Google Scholar
  8. Aly, A.H., Sayed, H.: Enhancement of the solar cell based on the nanophotonic crystals. J. Nanophotonics 11(4), 046020 (2017)ADSCrossRefGoogle Scholar
  9. Aly, A.H., Elsayed, H.A., Ameen, A.A., Mohamed, S.H.: Tunable properties of one dimensional photonic crystal that incorporate a defect layer of magnetized cold plasma. Int. J. Mod. Phys. B 31, 1750239-9 (2017a)ADSGoogle Scholar
  10. Aly, A.H., ElSayad, H.A., Malek, C.: Optical properties of one dimensional defective photonic crystal containing nanocomposite material. J. Nonlinear Opt. Phys. Mater. 26(1), 1750008-8 (2017b)CrossRefGoogle Scholar
  11. Aly, A.H., Ameen, A.A., Mohamed, HS., Elsayed, H.A., Singh, MR.: One dimensional metallo superconductor photonic crystals as a smart window. J. Supercond. Nov. Magn. 32(8), 2313–2318 (2018).  https://doi.org/10.1007/s10948-018-4978-z CrossRefGoogle Scholar
  12. Booker, H.G.: Cold Plasma Waves, pp. 23–25. Springer, New York (1984)CrossRefGoogle Scholar
  13. Busch, K., Freymann, G., von Linden, S., Mingaleev, S.F., Tkeshelashvili, L., Wegener, M.: Periodic nanostructures for photonics. Phys. Rep. 444, 101–202 (2007)ADSCrossRefGoogle Scholar
  14. Cai, W., Shalaev, W.: Optical Metamaterials: Fundamental and Applications. Springer, New York (2010)CrossRefGoogle Scholar
  15. Chigrin, D.N., Lavrinenko, A.V., Yarotsky, D.A., Gaponenko, S.V.: Observation of total omni-directional reflection from a one-dimensional dielectric lattice. Appl. Phys. 68, 25–28 (1999)CrossRefGoogle Scholar
  16. Feng, Z.H., Kong, X.K.: Photonic band gap in one dimensional magnetized plasma photonic crystals with arbitrary magnetic declination. Phys. Plasma 19, 122103–122115 (2012)ADSCrossRefGoogle Scholar
  17. Fink, Y., Winn, J.N., Fan, S., Chen, C., Michel, J., Joannopoulos, J.D., Thomas, E.L.: A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998)ADSCrossRefGoogle Scholar
  18. Gaponenko, S.V.: Introduction to Nanophotonics. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  19. Gu, X., Chen, X.F., Chen, Y.P., Zheng, X.L., Xia, Y.X., Chen, Y.L.: Narrowband multiple wavelengths filter in aperiodic optical super lattices. Opt. Commun. 237, 53–58 (2004)ADSCrossRefGoogle Scholar
  20. Hitoshi, H., Atushi, M.: Dispersion relation of electromagnetic wave in one dimensional plasma photonic crystal. J. Plasma Fusion Res. 80(2), 89–90 (2004).  https://doi.org/10.1585/jspf.80.89 ADSCrossRefGoogle Scholar
  21. Hojo, H., Akimoto K., MaseA. In: Conference Digest on 28th International Conference on Infrared and Millimeter Waves Otsu, pp. 347–348 (2003)Google Scholar
  22. Joannopolos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (1995)zbMATHGoogle Scholar
  23. John, S.: Strong localization of photons in certain disordered dielectric super lattices. Phys. Rev. Lett. 58, 2486–2489 (1987)ADSCrossRefGoogle Scholar
  24. Kazempour, B.: design of tunable multichannel filter in a one dimensional photonic crystal incorporating uniaxial meta-material at microwave frequency. Opt. Appl. 49, 1–26 (2019)Google Scholar
  25. King, T.C., Yang, C.C., Hseih, P.H., Chang, T.W., Wu, C.J.: Analysis of tunable photonic band gap structure in an extrinsic plasma photonic crystal. Phys E 67, 7–11 (2015).  https://doi.org/10.1016/j.physe.2014.11.001 CrossRefGoogle Scholar
  26. Kong, X.K., Yang, H.W., Liu, S.B.: Anamalous dispersion in one dimensional plasma photonic crystals. Optik (Jena) 121(20), 1873–1876 (2010a)ADSGoogle Scholar
  27. Kong, X.K., Liu, S.B., Jhang, H.F., Li, C.Z.: A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma. Phys. Plasmas. 17, 103506 (2010b)ADSCrossRefGoogle Scholar
  28. Kong, X.K., Liu, S.B., Jhang, H.F., Li, C.Z.: Am. Inst. Phys. 17, 103506 (2010c)Google Scholar
  29. Krauss, T.F., De La Rue, R.M.: Photonic crystals in the optical regime: past, present and future. Progress. Quant. Electron. 23, 51–96 (1999)ADSCrossRefGoogle Scholar
  30. Kumar, R.: In: Massaro, A. (ed.), Plasma Photonic Crystal (Photonic Crystals—Innovative Systems, Lasers and Waveguides. InTech (2012)Google Scholar
  31. Kumar, A., Thapa, K.B.: Study of optical property of defect mode in one dimensional double negative photonic crystal with plasma. Adv. Sci. Eng. Med. 10, 1–5 (2018)CrossRefGoogle Scholar
  32. Kumar, V., Singh, K.S., Ojha, S.P.: Band structure, reflection properties and abnormal behaviour of one-dimensional plasma photonic crystals. Prog. Electromagn. Res. M 9, 227–241 (2009)CrossRefGoogle Scholar
  33. Kumar, A., Singh, P.P., Thapa, K.B. A new idea for broadband reflector and tunable multi-channel filter of one dimensional symmetric photonic crystal with magnetized cold plasma defects. In: AIP Conference Proceedings, vol. 1953, p. 60043 (2018a)Google Scholar
  34. Kumar, A., Kumar, N., Thapa, K.B.: Tunable broadband reflector and tunable narrowband filter of a dielectric and magnetized cold plasma photonic crystal. Eur. Phys. J. Plus 133, 250 (2018b)CrossRefGoogle Scholar
  35. Kumar, A., Thapa, K.B., Ojha, S.P.: A tunable broadband filter of ternary photonic crystal containing plasma and superconducting material. Indian J. Phys. 93(6), 791–798 (2019)ADSCrossRefGoogle Scholar
  36. Lee, H.Y., Yao, T.: Design and evaluation of omni-directional one dimensional photonic crystals. J. Appl. Phys. 93, 819 (2003)ADSCrossRefGoogle Scholar
  37. Massaoudi, S., de Lustrac, A., Huynen, I.: Properties of metallic photonic band gap material with defect at microwave frequencies: calculation and experimental verification. JEMWA 20(14), 1967–1980 (2006)Google Scholar
  38. Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press limited, London (1998)Google Scholar
  39. Sakaguchi, T., Sakai, O., Tachibana, K.: J. Appl. Phys. 101, 073305 (2007)ADSCrossRefGoogle Scholar
  40. Sakai, O., Kishimoto, Y., Yachibana, K.: J. Phys. D Appl. Phys. 38, 431 (2005)ADSCrossRefGoogle Scholar
  41. Sakai, O., Sakaguchi, T., Tachibana, K.: J. Appl. Phys. 101, 073304 (2007)ADSCrossRefGoogle Scholar
  42. Sakoda, K.: Optical Properties of Photonic Crystals. Springer, Berlin (2004)Google Scholar
  43. Ward, A.J., Pendry, J.B.: Refraction and geometry in Maxwell’s equations. J. Mod. Opt. 43(4), 773–794 (1996)ADSMathSciNetCrossRefGoogle Scholar
  44. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRefGoogle Scholar
  45. Yeh, P.: Optical Waves in Layered Media. Wiley, New York (1988)Google Scholar
  46. Zhang, H.F., Liu, S.B., Kong, X.K.: Analysis of the properties of tunable prohibited band gaps for two dimensional unmagnetized plasma photonic crystals under TM-modes. Acta Phys. Sin. 60, 055209 (2011a). http://wulixb.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=18400 (in Chinese)
  47. Zhang, H.F., Liu, S.B., Kong, X.K.: Defect mode properties of two dimensional unmagnetized plasma photonic crystals with line defect under TM-mode. Acta Phys. Sin. 60, 025215 (2011b). http://wulixb.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=18019 (in Chinese)
  48. Zheng, Q.R., Lin, B.Q., Yuan, N.C.: Characteristics and applications of a noval compact spiral electromagnetic band gap (EBG) structures. J. Electromagn. Waves Appl. 21, 199–213 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, School of Physical and Decision SciencesBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations