Ultra-flat optical frequency comb generation based on amplitude modulator and Gaussian band-stop filter

  • Jian Shen
  • Shibao WuEmail author


A new scheme to generate ultra-flat optical frequency comb (OFC) with tunable frequency spacing is proposed and demonstrated based on an amplitude modulator driven by a digital periodic square-wave signal. A Gaussian band-stop filter is used to adjust flatness of the comb lines that generated from the amplitude modulator. The frequency spacing is adjusted by changing the period of the square-wave signal. The theoretical analysis model of the scheme is established and the relationship between the modulation index of the amplitude modulator and the flatness and power of OFC is studied. Through experiment simulations, it is shown that high-quality OFCs with the number of 32, 64, 128 comb lines, the tunable frequency spacing, and the flatness of 0.3 dB can be achieved.


Optical frequency comb Amplitude modulation Digital periodic square-wave signal Gaussian band-stop filter 



This work is supported by Program of Natural Science Foundation of China (Project Nos. 61132004, 61275073, 61420106011), Shanghai Science and Technology Development Funds (Project Nos. 15511105400, 15530500600, 16511104100).


  1. Bao, Y., Yi, X.W., Li, ZH., Chen, Q.M., Li, J.P., Fan, X.D., Zhang, X.M.: A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7 μm response time. Light Sci. Appl. 4, Art. no. e300 (2015)Google Scholar
  2. Bitou, Y., Schibli, T.R., Minoshima, K.: Accurate wide-range displacement measurement using tunable diode laser and optical frequency comb generator. Opt. Express 14(2), 644–654 (2006)ADSCrossRefGoogle Scholar
  3. Cundiff, S.T., Ye, J.: Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003)ADSCrossRefGoogle Scholar
  4. Del’Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R., Kippenberg, T.J.: Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101(5), Art. no. 053903 (2008)Google Scholar
  5. Hmood, J.K., Harun, S.W.: Broadband optical frequency comb generator based on driving N-cascaded modulators by Gaussian-shaped waveform. Opt. Fiber Technol. 42, 75–83 (2018)ADSCrossRefGoogle Scholar
  6. Iezzi, V.L., Loranger, S., Marois, M., Kashyap, R.: High-sensitivity temperature sensing using higher-order Stokes stimulated Brillouin scattering in optical fiber. Opt. Lett. 39(4), 857–860 (2014)ADSCrossRefGoogle Scholar
  7. Imai, K., Kourogi, M., Ohtsu, M.: 30-THz Span optical frequency comb generation by self-phase modulation in an optical fiber. IEEE J. Quantum Electron. 34(1), 54–60 (1998)ADSCrossRefGoogle Scholar
  8. Nakazawa, M., Hirooka, T., Ruan, P., Guan, P.: Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train. Opt. Express 20(2), 1129–1140 (2012)ADSCrossRefGoogle Scholar
  9. Soto, M.A., Alem, M., Shoaie, M.A., Vedadi, A., Bres, C.S., Thevenaz, L., Schneider, T.: Optical sinc-shaped Nyquist pulses of exceptional quality. Nat. Commun. 4, Art. no. 2898 (2013)Google Scholar
  10. Wang, Q., Huo, L., Xing, Y., Zhou, B.: Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach–Zehnder modulator. Opt. Lett. 39(10), 3050–3053 (2014)ADSCrossRefGoogle Scholar
  11. Yan, X.L., Zou, X.H., Pan, W., Yan, L.S., Azana, J.: Fully digital programmable optical frequency comb generation and application. Opt. Lett. 43(2), 283–286 (2018)ADSCrossRefGoogle Scholar
  12. Zhang, J., Yu, J., Chi, N., Shao, Y., Tao, L., Zhu, J., Wang, Y.: Stable optical frequency-locked multicarriers generation by double recirculating frequency shifter loops for Tb/s communication. J. Lightwave Technol. 30(24), 3938–3945 (2012a)ADSCrossRefGoogle Scholar
  13. Zhang, J.W., Yu, J.J., Chi, N., Shao, Y.F., Tao, L., Wang, Y.Q., Li, X.Y.: Improved muticarriers generation by using mutifrequency shifting recirculating loop. IEEE Photon. Technol. Lett. 24(16), 1405–1408 (2012b)ADSCrossRefGoogle Scholar
  14. Zhang, F., Wu, J., Li, Y., Lin, J.: Flat optical frequency comb generation and its application for optical waveform generation. Opt. Commun. 290, 37–42 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Specialty Fiber Optics and Optical Access NetworksShanghai UniversityShanghaiChina

Personalised recommendations