Advertisement

Slow light enhanced bio sensing properties of silicon sensors

  • Zaineb Gharsallah
  • Monia NajjarEmail author
  • Bhuvneshwer Suthar
  • Vijay Janyani
Article
  • 80 Downloads

Abstract

In this paper, we investigated slow light to increase sensitivity and quality factor of our recently designed bio-sensors. A finite difference time domain and Plane Wave Expansion methods are employed to figure out sensors’ performances. We proposed slow light based photonic crystal structures with elliptical cells and we obtained higher sensitivity and quality factor as previously reported. For the first proposed sensor, the results showed that quality factor increased from 570 to 723 and a detection limit below 10−3. For the second sensor, the sensitivity increased from 550 to 650 nm/RIU and the detection limit is around 10−3. These two proposed structures would offer great potential for novel compact biosensors in medical application.

Keywords

Biosensor Urea Urine Photonic crystal Slow light 

Notes

References

  1. Chakravarty, S., Zou, Y., Lai, W.-C., Chen, R.T.: Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon. Biosens. Bioelectron. 38(1), 170–176 (2012)CrossRefGoogle Scholar
  2. Densmore, A., Vachon, M., Xu, D.-X., Janz, S., Ma, R., Li, Y.-H., Lopinski, G., Delâge, A., Lapointe, J., Luebbert, C.: Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. Opt. Lett. 34(23), 3598–3600 (2009)ADSCrossRefGoogle Scholar
  3. Gharsallah, Z., Najjar, M., Janyani, V.: Slow light and dynamic buffer capability in two different photonic crystal waveguides. In: 2017 25th International Conference on 2017 Software, Telecommunications and Computer Networks (SoftCOM), 2017, pp. 1–5. IEEEGoogle Scholar
  4. Gharsallah, Z., Najjar, M., Suthar, B., Janyani, V.: High sensitivity and ultra-compact optical biosensor for detection of UREA concentration. Opt. Quant. Electron. 50(6), 249 (2018)CrossRefGoogle Scholar
  5. Iqbal, M., Gleeson, M.A., Spaugh, B., Tybor, F., Gunn, W.G., Hochberg, M., Baehr-Jones, T., Bailey, R.C., Gunn, L.C.: Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010)ADSCrossRefGoogle Scholar
  6. Janrao, N.L., et al.: Improved design of photonic crystal waveguides with elliptical holes for enhanced slow light performance. Opt. Eng. 51(6), 064001 (2012)ADSCrossRefGoogle Scholar
  7. Kraeh, C., Martinez-Hurtado, J., Popescu, A., Hedler, H., Finley, J.J.: Slow light enhanced gas sensing in photonic crystals. Opt. Mater. 76, 106–110 (2018)ADSCrossRefGoogle Scholar
  8. Lai, W.-C., Chakravarty, S., Zou, Y., Chen, R.T.: Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing. Opt. Lett. 37(7), 1208–1210 (2012)ADSCrossRefGoogle Scholar
  9. Lai, W.-C., Chakravarty, S., Zou, Y., Guo, Y., Chen, R.T.: Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors. Appl. Phys. Lett. 102(4), 041111 (2013)ADSCrossRefGoogle Scholar
  10. Liu, Q., Tu, X., Kim, K.W., Kee, J.S., Shin, Y., Han, K., Yoon, Y.-J., Lo, G.-Q., Park, M.K.: Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B Chem. 188, 681–688 (2013)CrossRefGoogle Scholar
  11. Passaro, V., Dell’Olio, F., Ciminelli, C., Armenise, M.N.: Efficient chemical sensing by coupled slot SOI waveguides. Sensors 9(2), 1012–1032 (2009)CrossRefGoogle Scholar
  12. Prieto, F., Sepulveda, B., Calle, A., Llobera, A., Domínguez, C., Abad, A., Montoya, A., Lechuga, L.M.: An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 14(8), 907 (2003)ADSCrossRefGoogle Scholar
  13. Qin, K., Hu, S., Retterer, S.T., Kravchenko, I.I., Weiss, S.M.: Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity. Opt. Lett. 41(4), 753–756 (2016)ADSCrossRefGoogle Scholar
  14. Rodriguez, G.A., Hu, S., Weiss, S.M.: Porous silicon ring resonator for compact, high sensitivity biosensing applications. Opt. Express 23(6), 7111–7119 (2015)ADSCrossRefGoogle Scholar
  15. Shen, H.J., Zhang, Q.L.: Dispersionless slow light by photonic crystal slab waveguide with innermost elliptical air holes. Optik 122(13), 1174–1178 (2011)ADSCrossRefGoogle Scholar
  16. Wang, B., Dündar, M.A., Nötzel, R., Karouta, F., He, S., van der Heijden, R.W.: Photonic crystal slot nanobeam slow light waveguides for refractive index sensing. Appl. Phys. Lett. 97(15), 151105 (2010a)ADSCrossRefGoogle Scholar
  17. Wang, X., Tian, H., Ji, Y.: Photonic crystal slow light Mach-Zehnder interferometer modulator for optical interconnects. J. Opt. 12(6), 065501 (2010b)ADSCrossRefGoogle Scholar
  18. Xu, D.-X., Vachon, M., Densmore, A., Ma, R., Delâge, A., Janz, S., Lapointe, J., Li, Y., Lopinski, G., Zhang, D.: Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach. Opt. Lett. 35(16), 2771–2773 (2010)ADSCrossRefGoogle Scholar
  19. Zaineb, G., Najjar, M., Janyani, V.: Slow light optimization in symmetric photonic crystal waveguide with elliptical holes. In: 22nd Asia-Pacific Conference on 2016 Communications (APCC), 2016 pp. 144–147. IEEEGoogle Scholar
  20. Zaineb G.N.M., Janyani, V.: Slow light investigation on power consumption of Lithium Niobate Phc switch based on linear electro-optic effect. J. Opt. Commun. (2017).  https://doi.org/10.1515/joc-2017-0171 CrossRefGoogle Scholar
  21. Zaineb, G., et al.: Optic switch based on Lithium Niobate photonic crystal structure without defect. In: 2017 International Conference on Computer, Communications and Electronics (Comptelix). IEEE (2017)Google Scholar
  22. Zakrzewski, A., Patela, S.: Investigation of the laser acetylene sensor based on two-dimensional photonic crystal. Sens. Actuators A 256, 51–58 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Communications Systems Laboratory (SysCom)National Enginneering School of Tunis (ENIT), University of Tunis El Manar (UTM)Tunis Le BélvédèreTunisia
  2. 2.University of Tunis El Manar Higher Institute of Computer SciencesTunisTunisia
  3. 3.M. L. B. Govt. CollegeNokha, BikanerIndia
  4. 4.Department of Electronics and Communication EngineeringMalaviya National Institute of TechnologyJaipurIndia

Personalised recommendations