All-optical temporal differentiation in hot standing-wave-dressed atoms

  • Xue Mei SuEmail author
  • Rui Zhang
  • Zhong Chang Zhuo


We propose a scheme to realize all-optical temporal differentiation calculation to input pulse in an inverse Y-type four-level atomic system driven by a strong standing-wave. Two optical blockades are created at individual wavelengths of two probe fields in presence of one single strong standing-wave field. On one hand, ultra-narrow transmission windows are produced for probe pulse field 1 when probe field 2 is so strong as a controlling field in EIT configuration. The system can be designed as a phase-reverter of weak probe field 1 and can perform temporal differentiation calculation to it because aπ phase shift is created. On the other hand, the blockade at probe field 2 can be burst in two-photon resonance configuration when probe field 1 becomes strong and saturated absorption takes effect. So a two-photon switching is also expected in this standing-wave-dressed atomic system. The scheme has a potential for an all-optical transistor in quantum logical circuits.


Quantum coherence Standing wave drive Dressed atoms 

PACS numbers

42.50.Gy 78.20.Ci 42.25.Bs 



This research is supported by National Scientific Foundation China (Grant No.11174109).


  1. Agarwal, G.S., Dey, T.N.: Ultraslow light in inhomogeneously broadened media. Phys. Rev. A 73, 043809 (2006)ADSCrossRefGoogle Scholar
  2. Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn, p. 66. Academic Press, New York (1995)Google Scholar
  3. Andre, A., Lukin, M.D.: Manipulating light pulses via dynamically controlled photonic band gap. Phys. Rev. Lett. 89, 143602 (2002)ADSCrossRefGoogle Scholar
  4. Anton, M.A., Calderon, O.G., Melle, S., Gonzalo, I., Carreno, F.: All-optical switching and storage in a four-level tripod-type atomic system. Opt. Commun. 268, 146 (2006)ADSCrossRefGoogle Scholar
  5. Bajcsy, M., Zibrov, A.S., Lukin, M.D.: Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003)ADSCrossRefGoogle Scholar
  6. Bigelow, M.S., Lepeshkin, N.N., Boyd, R.W.: Observation of ultraslow light propagation in a ruby crystal at room temperature. Phys. Rev. Lett. 90, 113903 (2003)ADSCrossRefGoogle Scholar
  7. Brown, A.W., Xiao, M.: All-optical switching and routing based on an electromagnetically induced absorption grating. Opt. Lett. 30, 699–701 (2005)ADSCrossRefGoogle Scholar
  8. Chen, W., Beck, K.M., Bucker, R., Gullans, M., Lukin, M.D., Tanji-Suzuki, H., Vuletic, V.: All-optical switch and transistor gated by one stored photon. Science 341(6147), 768–770 (2013)ADSCrossRefGoogle Scholar
  9. Chen, Z.R., Su, X.M., Kim, J.B., Zhuo, Z.C.: Observation of electromagnetically induced photonic bandgaps in hot two-level atoms. J. Mod. Opt. 61, 898–903 (2014)ADSCrossRefGoogle Scholar
  10. DellAnno, F., SienaS, D., Illuminati, F.: Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428, 53–168 (2006)ADSMathSciNetCrossRefGoogle Scholar
  11. Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68(3), 733–753 (1996)ADSMathSciNetCrossRefGoogle Scholar
  12. Feneuille, S.: Theoretical study of the resonances of a two level atom perturbed by a quasi-resonant radiation. J. Phys. B: At. Mol. Phys. 7, 1981 (1974)ADSMathSciNetCrossRefGoogle Scholar
  13. Fortágh, J., Zimmermann, C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79(1), 235–289 (2007)ADSCrossRefGoogle Scholar
  14. Gea-Banacloche, J., Li, Y., Jin, S., Xiao, M.: Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment. Phys. Rev. A 51(1), 576–584 (1995)ADSCrossRefGoogle Scholar
  15. Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50(7), 36–42 (1997)CrossRefGoogle Scholar
  16. Jones, M.P.A., Vale, C.J., Sahagun, D., Hall, B.V., Hinds, E.A.: Spin coupling between cold atoms and the thermal fluctuations of a metal surface. Phys. Rev. Lett. 91(8), 080401 (2003)ADSCrossRefGoogle Scholar
  17. Kim, S., Wang, Z., Hagan, D.J., Van Stryland, E.W., Kobyakov, A., Lederer, F., Assanto, G.: Phase-insensitive all-optical transistors based on second-order nonlinearities. IEEE J. Quantum Electron. 34(4), 666–672 (1998)ADSCrossRefGoogle Scholar
  18. Leuchs, G., Beth, T.: Quantum Information Technology. Wiley, New York (2003)zbMATHGoogle Scholar
  19. Li, D.W., Zhang, L., Zhuo, Z.C., Kim, J.B., Su, X.M.: Electromagnetically induced photonic bandgap in hot Cs atoms. JOSA B 27, 690–695 (2010)ADSCrossRefGoogle Scholar
  20. Payne, M.G., Deng, L., Jiang, K.J.: Limitations of steady state solutions to a two-state model of population oscillations and hole burning. Phys. Rev. A 74, 043810 (2006)ADSCrossRefGoogle Scholar
  21. Roso, L., Corbalan, R., Orriols, G., Vilaseca, R.: Dressed-atom approach for probe spectroscopy in Doppler-broadened three-level systems with standing-wave saturator. Appl. Phys. B 31, 115–129 (1983)ADSCrossRefGoogle Scholar
  22. Schweinsberg, A., Lepeshkin, N.N., Bigelow, M.S., Boyd, R.W., Jarabo, S.: Observation of superluminal and slow light propagation in erbium-doped optical fiber. Europhys. Lett. 73(2), 218–224 (2006)ADSCrossRefGoogle Scholar
  23. Silva, F., Mompart, J., Ahufinger, V., Corbalan, R.: Electromagnetically induced transparency with a standing-wave drive in the frequency up-conversion regime. Phys. Rev. A 64, 033802 (2001)ADSCrossRefGoogle Scholar
  24. Steck, D.A.: Quantum Chaos, Transport, and Decoherence in Atom Optics. Dissertation. Chapter 2, pp 61–63 (2001)Google Scholar
  25. Su, X.M., Sheng, J., Xiao, M.: Coupled atomic coherences induced by a standing wave. Opt. Commun. 318, 120 (2014)ADSCrossRefGoogle Scholar
  26. Vedral, V.: Introduction to Quantum Information. Oxford U. Press, New York (2006)CrossRefGoogle Scholar
  27. Vitanov, N.V., Fleischhauer, M., Shore, B.W., Bergmann, K.: Laser-induced population transfer by adiabatic passage techniques. Adv. At., Mol., Opt. Phys. 46, 55–190 (2001)ADSCrossRefGoogle Scholar
  28. Weinacht, T.C., Ahn, J., Bucksbaum, P.H.: Controlling the shape of a quantum wavefunction. Nature 397, 233–235 (1999)ADSCrossRefGoogle Scholar
  29. Wielandy, S., Gaeta, A.L.: investigation of electromagnetically induced transparency in the strong probe regime. Phys. Rev. A 58, 2500–2505 (1998)ADSCrossRefGoogle Scholar
  30. Wu, H., Gea-Banacloche, J., Xiao, M.: Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium. Phys. Rev. Lett. 100, 173602 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Ministry of Education, Physics CollegeJilin UniversityChangchunChina

Personalised recommendations