Visible-enhanced silver-doped PbI2 nanostructure/Si heterojunction photodetector: effect of doping concentration on photodetector parameters

  • Raid A. IsmailEmail author
  • Ali M. Mousa
  • Suaad S. Shaker


This paper presents the effect of doping concentration on the properties of PbI2 nanostructure film and p-PbI2:Ag/n-Si photodetector prepared by pulsed laser deposition PLD method. The PbI2 film was doped with silver at doping concentrations of 1%, 3% and 5%. XRD results show that all deposited PbI2 films are polycrystalline and well-crystallized along (001) plane with hexagonal structure. The structural studies revealed that the grain size of the film decreases as the doping concentration increase. Energy dispersive X-ray EDX, scanning electron microscope SEM and elemental mapping analysis confirm the presence of Pb, I and Ag elements and the films were near stoichiometric. Raman spectra of PbI2 film showed the presence of Raman peaks located at 73, 94.3, 108, 165.7, and 208.9 cm−1 corresponding to E21, A11, A12, 2E11 and 2A12 vibration modes, respectively, and a Raman peak at 185 cm−1 was observed for the film doped with 5 wt% which indexed to 2E11. The optical energy gap of the film decreased from 2.8 to 2.3 eV after doping with silver. Hall measurement confirms that the deposited PbI2 films are p-type and the electrical resistivity of the film increases from 1.1 × 104 to 1.8 × 107 Ω cm as doping concentration increases from 1 to 5%.


PbI2 2H-polytype PLD Raman spectra Photodetector Ag:PbI2 



  1. Abdulnabi, R.K., Mohsin, M.H., Ismail, R.A., Mousa, A.M., Jawad, M.F.: Effect of laser energy on the properties of nanostructured lead iodide film prepared via pulsed laser deposition technique. Optik (Stuttg) 176, 206–213 (2019). ADSCrossRefGoogle Scholar
  2. Agekyan, V.F.: Growth and optical properties of BiI3 and PbI2 microcrystals. Phys. Solid State 40, 1568–1573 (1998). ADSCrossRefGoogle Scholar
  3. Bhavsar, D.: Transmittance and reflectance properties of Cu-doped and undoped lead iodide thin films deposited by vacuum evaporation technique. Arch. Appl. Sci. Res. 4, 1106–1109 (2012)Google Scholar
  4. Dmitriev, Y., Bennett, P., Cirignano, L.J., Klugerman, M., Shah, K.S.: Physical modeling of the electrical properties of PbI2 films. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 592, 334–345 (2008). ADSCrossRefGoogle Scholar
  5. Ebothe, J., Miolek, W., Plucinski, K.J., Hui, D.: GeSe2–Ga2S3–PbI2 as materials for IR-stimulated optical second harmonic generation. J. Mater. Sci. Mater. Electron. 19, 233–236 (2008). CrossRefGoogle Scholar
  6. Goto, T., Saito, S.: Optical properties of ultrathin PbI2 microcrystallite in polymer. J. Lumin. 70, 435–447 (1996). CrossRefGoogle Scholar
  7. Ilkhechi, N.N., Ahmadi, A., Kaleji, B.K.: Optical and structural properties of nanocrystalline anatase powders doped by Zr, Si and Cu at high temperature. Opt. Quantum Electron. 47, 2423–2434 (2015a). CrossRefGoogle Scholar
  8. Ilkhechi, N.N., Koozegar-Kaleji, B., Dousi, F.: Optical and structural properties of tenorite nanopowders doped by Si and Zr. Opt. Quantum Electron. 47(3), 633–642 (2015b). CrossRefGoogle Scholar
  9. Ilkhechi, N.N., Dousi, F., Kaleji, B.K., Salahi, E.: Optical and structural properties of TiO nanocomposite doped by Si and Cu at high temperature. Opt. Quantum Electron. 47(7), 1751–1763 (2015c). CrossRefGoogle Scholar
  10. Ilkhechi, N.N., Koozegar-Kaleji, B., Salahi, E.: Effect of heating rate on structural and optical properties of Si and Mg co-doped ZrO2 nanopowders. Opt. Quantum Electron. 47(5), 1187–1195 (2015d). CrossRefGoogle Scholar
  11. Ilkhechi, N.N., Ghobadi, N., Yahyavi, F.: Enhanced optical and hydrophilic properties of V and La co-doped ZnO thin films. Opt. Quantum Electron. 49(1), 39–48 (2017). CrossRefGoogle Scholar
  12. Ismail, R.A., Abdulrazaq, O., Yahya, K.: Preparation and characterization of In2O3 thin films for optoelectronic applications. Surf. Rev. Lett. 12, 515–518 (2005). ADSCrossRefGoogle Scholar
  13. Ismail, R.A., Raouf, D.N., Raouf, D.F.: High efficiency In2O3/c-Si heterojunction solar cells produced by rapid thermal oxidation. J. Optoelectron. Adv. Mater. 8, 1443–1446 (2006)Google Scholar
  14. Ismail, R.A., Hamoudi, W.K., Saleh, K.K.: Effect of rapid thermal annealing on the characteristics of amorphous carbon/n-type crystalline silicon heterojunction solar cells. Mater. Sci. Semicond. Process. 21, 194–199 (2014). CrossRefGoogle Scholar
  15. Ismail, R.A., Mousa, A.M., Khashan, K.S., Mohsin, M.H., Hamid, M.K.: Synthesis of PbI2 nanoparticles by laser ablation in methanol. J. Mater. Sci. Mater. Electron. 27(10), 10696–10700 (2016). CrossRefGoogle Scholar
  16. Ismail, R.A., Mousa, A.M., Amin, M.H.: Effect of laser fluence on the structural, morphological and optical properties of 2H-PbI2 nanoparticles prepared by laser ablation in ethanol. J. Inorg. Organomet. Polym. 28, 2365–2374 (2018a). CrossRefGoogle Scholar
  17. Ismail, R.A., Mousa, A.M., Amin, M.H.: Synthesis of hybrid Au@PbI2 core–shell nanoparticles by pulsed laser ablation in ethanol. Mater. Res. Express 5, 115024 (2018b). ADSCrossRefGoogle Scholar
  18. Ismail, R.A., Mousa, A.M., Shaker, S.: Effect of laser fluence on the structural and optical properties. Mater. Res. Express 6, 075007–115032 (2019). ADSCrossRefGoogle Scholar
  19. Kapustyanyk, V.B., Pasternak, R.M., Kalush, A.Z., Panasyuk, M.R., Tsibul’skii, V.S., Rudyk, V.P., Serkiz, R.Y.: Exciton spectra of layered PbI2 and PbI2 and PbI2:Zr crystals. J. Appl. Spectrosc. 74, 252–257 (2007). CrossRefGoogle Scholar
  20. Kravchuk, I.M., Novosad, S.S., Novosad, I.S.: Luminescence from Mn-doped PbI2 crystals. Tech. Phys. 46, 262–265 (2001). CrossRefGoogle Scholar
  21. Long, C., Hou, X., Gelbstein, Y., Zhang, J., Ren, B., Wang, Z.: Preparation and thermoelectric properties of N-type PbTe doped with in and PbI2. In: International Conference on Thermoelectrics. ICT, Proceedings, pp. 382–385 (2006).
  22. Malevu, T.D., Ocaya, R.O., Tshabalala, K.G.: Phase transformations of high-purity PbI2 nanoparticles synthesized from lead-acid accumulator anodes. Physica B 496, 69–73 (2016). ADSCrossRefGoogle Scholar
  23. Matuchová, M., Žďánský, K., Svatuška, M., Zavadil, J., Procházková, O.: Electrical resistivity and photoluminescence of lead iodide crystals. Chem. Pap. 61, 36–40 (2007). CrossRefGoogle Scholar
  24. Matuchova, M., Zdansky, K., Zavadil, J., Danilewsky, A., Riesz, F., Hassan, M.A.S., Alexiew, D., Kral, R.: Study of the influence of the rare-earth elements on the properties of lead iodide. J. Cryst. Growth 311, 3557–3562 (2009). ADSCrossRefGoogle Scholar
  25. Mousa, A.M., Ismail, R.A., Amin, M.H.: Hybrid p-Au@PbI2/n-Si heterojunction photodetector prepared by pulsed laser ablation in liquid. Optik 27, 128–941 (2019). CrossRefGoogle Scholar
  26. Nakrela, A., Benramdane, N., Bouzidi, A., Kebbab, Z., Medles, M., Mathieu, C.: Site location of Al-dopant in ZnO lattice by exploiting the structural and optical characterisation of ZnO: Al thin films. Results Phys. 6, 133–138 (2016). ADSCrossRefGoogle Scholar
  27. Novosad, S.S., Novosad, I.S., Matviishin, I.M.: Luminescence and photosensitivity of PbI2 crystals. Inorg. Mater. 38, 1058–1062 (2002). CrossRefGoogle Scholar
  28. Preda, N., Mihut, L., Baltog, I., Velula, T., Teodorescu, V.: Optical properties of low-dimensional PbI2 particles embedded in polyacrylamide matrix. J. Optoelectron. Adv. Mater. 8, 909–913 (2006)Google Scholar
  29. Rybak, O.V., Lun, Yu.O., Bordun, I.M., Omelyan, M.F.: Crystal growth and properties of PbI2 doped with Fe and Ni. Inorg. Mater. 41, 1124–1127 (2005). CrossRefGoogle Scholar
  30. Shkir, M., Alfaify, S.: Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7(1), 16091 (2017). ADSCrossRefGoogle Scholar
  31. Shkir, M., Yahia, I.S., Ganesh, V., Algarni, H., Alfaify, S.: Facile hydrothermal-assisted synthesis of Gd3+ doped PbI2 nanostructures and their characterization. Mater. Lett. 176, 135–138 (2016). CrossRefGoogle Scholar
  32. Shkir, M., AlFaify, S., Yahia, I.S., Hamdy, M.S., Ganesh, V., Algarni, H.: Facile hydrothermal synthesis and characterization of cesium-doped PbI2 nanostructures for optoelectronic, radiation detection and photocatalytic applications. J. Nanopart. Res. 19, 328 (2017). ADSCrossRefGoogle Scholar
  33. Shkir, M., Yahia, I.S., Ganesh, V., Bitla, Y., Ashraf, I.M., Kaushik, A., AlFaify, S.: A facile synthesis of Au-nanoparticles decorated PbI2 single crystalline nanosheets for optoelectronic device applications. Sci. Rep. 8, 1–10 (2018). CrossRefGoogle Scholar
  34. Slimi, B., Mollar, M., Assaker, I.B., Kriaa, I., Chtourou, R., Marí, B.: Perovskite FA1−xMAxPbI3 for solar cells: films formation and properties. Energy Procedia 102, 87–95 (2016). CrossRefGoogle Scholar
  35. Suthanthiraraj, S.A., Mathew, V.: AC conductivity, XRD and transport properties of melt quenched PbI2–Ag2O–Cr2O3 system. Ionics (Kiel) 14, 79–83 (2008). CrossRefGoogle Scholar
  36. Yahia, I.S., Shkir, M., Ganesh, V., Abutalib, M.M., Zahran, H.Y., Alfaify, S.: Facile microwave-assisted synthesis of Al: Mn Co-doped PbI2 nanosheets: structural, vibrational, morphological, dielectric and radiation activity studies. Mater. Sci. Pol. 36, 320–326 (2018). ADSCrossRefGoogle Scholar
  37. Zhang, J., Song, T., Zhang, Z., Ding, K., Huang, F., Sun, B.: Layered ultrathin PbI2 single crystal for high sensitivity flexible. J. Mater. Chem. C 3, 4402–4406 (2015). CrossRefGoogle Scholar
  38. Zhengwu, J.: Preparation and crystallization kinetics of PbI2–PbBr2–AgI ternary glasses. J. Mater. Lett. 17, 1831–1834 (1998). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied ScienceUniversity of TechnologyBaghdadIraq

Personalised recommendations