A design procedure for fan-out improvement in all-optical photonic crystal logic design

  • Hojjat Sharifi
  • Seyedeh Mehri HamidiEmail author
  • Keivan Navi


In this paper, a general method is proposed to improve the fan-out parameter for all-optical logic gates and functions. Two different types of devices are designed to increase the fan-out of a logic operation and its inverted logic. Nonlinear cavities are used to design driving units. Silicon nanocrystal is used as the nonlinear material to create the required frequency shift for different values of input power. Plane wave expansion and finite difference time domain methods are used to simulate and analyze the proposed structures. The propagation delay of the proposed structure is less than 1.5 ps and the maximum required power for fan-out of three is 15 W.


Fan-out Photonic crystal Nonlinear Logic gates 



  1. Andalib, P., Granpayeh, N.: All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators. J. Opt. A Pure Appl. Opt. 11, 085203–085210 (2009a)ADSCrossRefGoogle Scholar
  2. Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. JOSA B 26, 10–16 (2009b)ADSCrossRefGoogle Scholar
  3. Bao, J., Xiao, J., Fan, L., Li, X., Hai, Y., Zhang, T., et al.: All-optical NOR and NAND gates based on photonic crystal ring resonator. Opt. Commun. 329, 109–112 (2014)ADSCrossRefGoogle Scholar
  4. Bchir, R., Bardaoui, A., Ezzaouia, H.: Design of silicon-based two-dimensional photonic integrated circuits: XOR gate. IET Optoelectron. 7, 25–29 (2013)CrossRefGoogle Scholar
  5. Danaie, M., Kaatuzian, H.: Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect. Opt. Quant. Electron. 44, 27–34 (2012)CrossRefGoogle Scholar
  6. Fasihi, K., Mohammadnejad, S.: Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback. Opt. Express 17, 8983–8997 (2009)ADSCrossRefGoogle Scholar
  7. Greene, J.H., Taflove, A.: General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics. Opt. Express 14, 8305–8310 (2006)ADSCrossRefGoogle Scholar
  8. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2011)CrossRefGoogle Scholar
  9. Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15, 5976–5990 (2007)ADSCrossRefGoogle Scholar
  10. Lee, E.-H.: Micro/nano-scale optical network: a new challenge toward next generation. In: 10th Anniversary International Conference on Transparent Optical Networks. ICTON 2008, pp. 118–119 (2008)Google Scholar
  11. Li, X.-Q., Xu, Y.: Optical sensing by using photonic crystal based Mach–Zehnder interferometer. Opt. Commun. 301, 7–11 (2013)ADSCrossRefGoogle Scholar
  12. Nagpal, Y., Sinha, R.: Modeling of photonic band gap waveguide couplers. Microwave Opt. Technol. Lett. 43, 47–49 (2004)CrossRefGoogle Scholar
  13. Noda, S., Baba, T.: Roadmap on Photonic Crystals. Springer, Berlin (2013)Google Scholar
  14. Prakash, G.V., Cazzanelli, M., Gaburro, Z., Pavesi, L., Iacona, F., Franzo, G., et al.: Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 91, 4607–4610 (2002)ADSCrossRefGoogle Scholar
  15. Robinson, S., Nakkeeran, R.: A bandpass filter based on 2D circular photonic crystal ring resonator. In: 2010 Seventh International Conference on Wireless and Optical Communications Networks (WOCN), pp. 1–3 (2010)Google Scholar
  16. Salmanpour, A., Mohammadnejad, S., Omran, P.T.: All-optical photonic crystal NOT and OR logic gates using nonlinear Kerr effect and ring resonators. Opt. Quant. Electron. 47, 3689–3703 (2015a)CrossRefGoogle Scholar
  17. Salmanpour, A., Mohammadnejad, S., Bahrami, A.: All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators. J. Mod. Opt. 62, 693–700 (2015b)ADSMathSciNetCrossRefGoogle Scholar
  18. Sharifi, H., Hamidi, S.M., Navi, K.: A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic. Opt. Commun. 370, 231–238 (2016)ADSCrossRefGoogle Scholar
  19. Sharifi, H., Hamidi, S.M., Navi, K.: All-optical photonic crystal logic gates using nonlinear directional coupler. Photonics Nanostruct. Fundam. Appl. 27, 55–63 (2017)ADSCrossRefGoogle Scholar
  20. Shinya, A., Mitsugi, S., Tanabe, T., Notomi, M., Yokohama, I., Takara, H., et al.: All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab. Opt. Express 14, 1230–1235 (2006)ADSCrossRefGoogle Scholar
  21. Sukhoivanov, I.A., Guryev, I.V.: Photonic Crystals: Physics and Practical Modeling, vol. 152. Springer, Berlin (2009)CrossRefGoogle Scholar
  22. Yang, Y.-P., Yang, I.-C., Chang, C.-H., Tsai, Y.-T., Lee, K.-Y., Tsai, Y.-R., et al.: Binary operating in all-optical logic gates based on photonic crystals. In: 2012 International Symposium on Computer, Consumer and Control (IS3C), pp. 302–304 (2012)Google Scholar
  23. Zhu, Z.-H., Ye, W.-M., Ji, J.-R., Yuan, X.-D., Zen, C.: High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt. Express 14, 1783–1788 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hojjat Sharifi
    • 1
  • Seyedeh Mehri Hamidi
    • 2
    Email author
  • Keivan Navi
    • 1
  1. 1.Faculty of Computer Science and EngineeringShahid Beheshti University, GCTehranIran
  2. 2.Laser and Plasma Research InstituteShahid Beheshti University, GCTehranIran

Personalised recommendations