Composition dependence of structural and optical properties of GexSe100−x semiconducting thin films

  • S. Moustafa
  • Mansour MohamedEmail author
  • M. A. Abdel-Rahim


The studied thin films of GexSe100−x compositions were synthesized with thermal evaporation technique at room temperature. The effect of composition on the structure of the prepared films was characterized by X-ray diffraction and scanning electron microscopy. The stoichiometry of the studied compositions was examined by energy dispersive X-ray spectroscopy. The film thickness and refractive index were calculated by Swanepoel’s method. The structural analysis showed that the as-prepared GexSe100−x (x = 10, 15, 20 and 30 at.%) films exhibit the amorphous state while other films containing 25, 35 and 40 at.% of Ge are polycrystalline. On the other hand, the GeSe and Se crystalline phases are obtained for the annealed films. The analysis of the optical spectra showed that \(E_{g}\) increases with increasing Ge content up to a x = 30 at.% and then decreases with further increase of the Ge concentration. Other many optical parameters such as optical conductivity, dispersion energy and dissipation factor were determined and strongly affected by the variation of the composition.


Swanepoel’s method Thin films Chalcogenides Optical properties Coating technique 



  1. Abdel-Rahim, M.A., Hafiz, M.M., Shamekh, A.M.: A study of crystallization kinetics of some Ge–Se–In glasses. Physica B 369, 143–154 (2005)ADSGoogle Scholar
  2. Abd-Elrahman, M.I., Hafiz, M.M., Abdelraheem, A.M., Abu-Sehly, A.A.: Characterization of optical constants and dispersion parameters of highly transparent Ge20Se76Sn4 amorphous thin film. Opt. Mater. 50, 99–103 (2015)ADSGoogle Scholar
  3. Ammar, A.H., Farid, A.M., Fouad, S.S.: Optical and other physical characteristics of amorphous Ge–Se–Ag alloys. Phys. B 307, 64–71 (2001)ADSGoogle Scholar
  4. Bardangna, J., Keneman, S.: In: Smith, H.M. (ed.), Holographic Recording Media. Springer, Berlin (1977), p. 229Google Scholar
  5. Bicerano, J., Ovshinsky, S.R.: Chemical bond approach to the structures of chalcogenide glasses with reversible switching properties. J. Non-Cryst. Solids 74, 75–84 (1985)ADSGoogle Scholar
  6. Chen, L., Li, P., Wen, Y., Wang, D.: High sensitivity magnetic sensor consisting of ferromagnetic alloy, piezoelectric ceramic and high-permeability FeCuNbSiB. J. Alloys Compd. 509, 4811–4815 (2011)Google Scholar
  7. Coniiel, G.A.N., Lewis, A.J.: Comments on the evidence for sharp and gradual optical absorption edges in amorphous germanium. Phys. Status Soildi B 60, 291–298 (1973)ADSGoogle Scholar
  8. Dantanarayana, Harshana G., Abdel-Moneim, Nabil, Tang, Zhuoqi, Sojka, Lukasz, Sujecki, Slawomir, Furniss, David, Seddon, Angela B., Kubat, Irnis, Bang, Ole, Benson, Trevor M.: Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation. Opt. Mater. Express 4, 1444–1455 (2014)ADSGoogle Scholar
  9. Davis, E.A., Mott, N.F.: Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903–0922 (1970)ADSGoogle Scholar
  10. El-Bana, M.S., Fouad, S.S.: Optoelectrical properties of Ge10Se90 and Ge10Se85Cu5 thin films illuminated by laser beams. Appl. Phys. A 124, 132–140 (2018)ADSGoogle Scholar
  11. El-Korashy, A., Bakry, A., Abdel-Rahim, M.A., Abd El-Sattar, M.: Annealing effects on some physical properties of Ge5Se25Te70 chalcogenide glasses. Phys. B 391, 266-273 (2007)ADSGoogle Scholar
  12. Elliot, S.R.: The Physics and Chemistry of Solids. Wiley, Chichester (2000), p. 630Google Scholar
  13. El-Metwallya, E.G., Abou-Helalb, M.O., Yahiaa, I.S.: Optical constants of the thermally evaporated a-Se70Ge30 thin films. J. Ovonic Res. 4(2), 20–24 (2008)Google Scholar
  14. Fang, Y., Jayasuriya, D., Furniss, D., Tang, Z.Q., Sojka, Ł., Markos, C., Sujecki, S., Seddon, A.B., Benso, T.M.: Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method. Opt. Quant. Electron. 49, 237–255 (2017)Google Scholar
  15. Farag, E.M.: Dispersive optical constants of a-Se100−xSbx films. Opt. Laser Technol. 36, 35–38 (2004)ADSGoogle Scholar
  16. Fayek, S.A., Ibrahim, M.M.: Optical properties of different metal additives to GeSe amorphous films. Arab J. Nuclear Sci. Appl. 46, 142–153 (2013)Google Scholar
  17. Fouad, S.S., Fadel, M., Abd El-Wahabb, E.: Detailed comparison between the hopping conductivity and theoretical data of the GexSe100−x glassy system. J. Ovonic Res. 4, 51–60 (2008)Google Scholar
  18. Fritzsche, H.: The origin of reversible and irreversible photostructural changes in chalcogenide glasses. Philos. Mag. B 68, 561–572 (1993)ADSGoogle Scholar
  19. Hafiz, M.M., Othman, A.A., El-nahass, M.M., Al-Motasem, A.T.: Composition and electric field effects on the transport properties of Bi doped chalcogenide glasses thin films. Phys. B 390, 286–292 (2007)ADSGoogle Scholar
  20. Hafiz, M.M., Mahfoz Kotb, H., Dabban, M.A., Abdel-Latifa, A.Y.: Optical properties of Cd20Se80−xMx (M: Zn, In, and Sn) thin film alloys. Opt. Laser Technol. 49, 188–195 (2013)ADSGoogle Scholar
  21. Jenlcins, F.A.: White Fundamentals of Optics. McGraw-HiIl, New York (1957), P. 282Google Scholar
  22. Jeong, D.S., Park, G.-H., Lim, H., Hwang, C.S., Lee, S., Cheong, B.-K.: DC current transport behavior in amorphous GeSe films. Appl. Phys. A 102, 1027–1032 (2011)ADSGoogle Scholar
  23. Kamal, A.: Aly, On the study of the optical constants for different compositions of Snx (GeSe)100−x thin films in terms of the electronic polarizability, electronegativity and bulk modulus. Appl. Phys. A 120, 293–299 (2015)Google Scholar
  24. Kamboj, M., Kaur, G., Thangaraj, R.: Dark and photoconductivity of amorphous Se–Te–Pb thin films. Thin Solid Films 420, 350–353 (2002)Google Scholar
  25. Kubliha, M., Kostka, P., Trnovcová, V., Zavadil, J., Bednarcik, J., Labaš, V., Pedlíková, J., Dippel, A-Ch., Liermann, H.-P.: J. Alloys Compd. 586, 266–273 (2014)Google Scholar
  26. Kuzyutkina, YuS, Romanova, E.A., Kochubei, V.I., Shiryaev, V.S.: Specific features of linear and nonlinear optical responses of chalcogenide glasses in the As–S–Se and As–Se–Te systems. Opt. Spectrosc. 117, 49–55 (2014)ADSGoogle Scholar
  27. Mishra, S., Lohia, P., Dwivedi, D.K.: Structural and optical properties of (Ge11.5 Se67.5Te12.5)100−x Sbx (0  ≤  x  ≤  30) chalcogenide glasses: a material for IR devices. Infrared Phys. Technol. 100, 109–116 (2019)ADSGoogle Scholar
  28. Mohamed, M., Abdel-Rahim, M.: Composition effect on the structure and optical parameters of Ge–Se–Te thin films. Mat. Sci. Semicon. Proc. 27, 288–292 (2014)Google Scholar
  29. Mohamed, M., Abdel-Rahim, M.: Thickness effect on the optical parameters of Ge20Se50Te30 thin films. Vacuum 120, 75–80 (2015)ADSGoogle Scholar
  30. Mohamed, M., Abdelraheem, A.M., Abd-Elrahman, M.I., Hadia, N.M.A., Shaaban, E.R.: Composition dependence of structural and linear and non-linear optical properties of CdS1−xMnx semiconducting thin films. Appl. Phys. A 125, 483–501 (2019)ADSGoogle Scholar
  31. Moharram, A.H.: Structural and optical properties of Ge20SbxSe80−x films. Appl. Phys. A 123, 515–519 (2017)Google Scholar
  32. Mott, N.F., Davis, E.A.: Electronic Processes in Non-crystalline Materials, 2nd edn. Clarendon, Oxford (1979a), p. 500Google Scholar
  33. Mott, N.F., Davis, E.A.: Electronic Processes in Non-crystalline Materials, Oxford Clarendon, Oxford (1979b), p. 428Google Scholar
  34. Nermec, P., Frumar, M., Jedelsky, J., Jelinek, M., Lancok, J., Gregora, I.: Thin amorphous chalcogenide films prepared by pulsed laser deposition. J. Non-Cryst. Solids 299–302, 1013–1017 (2002)Google Scholar
  35. Pan, R.K., Tao, H.Z., Zang, H.C., Zhao, X.J., Zhang, T.J.: Optical properties of pulsed laser deposited amorphous (GeSe2)100−x Bix films. Appl. Phys. A 99, 889–894 (2010)ADSGoogle Scholar
  36. Pan, R.K., Taob, H.Z., Wang, J.Z., Wang, J.Y., Chu, H.F., Zhanga, T.J., Wang, D.F., Zhao, X.J.: Structure and optical properties of amorphous Ge–Se films prepared by pulsed laser deposition. Optik 124(21), 4943–4946 (2013)ADSGoogle Scholar
  37. Pankove, J.I.: Optical Processes in Semiconductors. Dover, New York (1975), p.428Google Scholar
  38. Petri, L., Salmon, P.S., Fischer, H.E.: Defects in a disordered world: the structure of glassy GeSe2. Phys. Rev. Lett. 84(1l), 2413–2416 (2000)ADSGoogle Scholar
  39. Scherrer, P.: Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften. Math. Phys. K 2, 98–100 (1918)Google Scholar
  40. Shaaban, E.R., Hassaan, M.Y., Moustafa, M.G., Qasem, Ammar, Ali, Gomaa A.M., Yousef, El Sayed: Optical constants, dispersion parameters and non-linearity of different thickness of As40S45Se15 thin films for optoelectronic applications. Optik 186, 275–287 (2019)ADSGoogle Scholar
  41. Sharma, P., Katyal, S.C.: Influence of replacing Se in Ge10Se90 glassy alloy by 50 at.%Te on the optical parameters. J. Ovonic Res. 2, 105–110 (2006)Google Scholar
  42. Swanepoel, R.: Determination of the thickness and optical constants of amorphous silicon. J. Phys. E 16, 1214–1222 (1983)ADSGoogle Scholar
  43. Swanepoel, R.: Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J. Phys. E: Sci. Instrum. 17, 896–903 (1984)ADSGoogle Scholar
  44. Tanaka, K.: Optical properties and photoinduced changes in amorphous As-S films. Thin Solid Films 66, 271–279 (1980)ADSGoogle Scholar
  45. Tanaka, K.: Structural phase transitions in chalcogenide glasses. Phys. Rev. B 39, 1270–1279 (1989)ADSGoogle Scholar
  46. Tauc, J.: Amorphous and Liquid Semiconductors, 1st edn. Plenum, New York (1974), p. 203Google Scholar
  47. Tichý, L., Tichá, H.: Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J. Non-Cryst. Solids 189, 141–146 (1995)ADSGoogle Scholar
  48. Tichy, L., Ticha, H., Nagels, P., Callaerts, R.: Photoinduced optical changes in amorphous Se and Ge–Se films. J. Non-Cryst. Solids 240, 177–181 (1998)ADSGoogle Scholar
  49. Urbach, F.: The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1324 (1953)ADSGoogle Scholar
  50. Wemple, S.H.: Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7, 3767–3777 (1973)ADSGoogle Scholar
  51. Wemple, S.H., Di Domininco, M.: Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. 3, 1338–1351 (1971)Google Scholar
  52. Yakuphanoglu, F., Cukurovali, A., Yilmaz, I.: Refractive index and optical absorption properties of the complexes of a cyclobutane containing thiazolyl hydrazone ligand. Opt. Mater. 27, 1363–1368 (2005a)ADSGoogle Scholar
  53. Yakuphanoglu, F., Sekerci, M., Balaban, A.: The effect of film thickness on the optical absorption edge and optical constants of the Cr(III) organic thin films. Opt. Mater. 27, 1369–1372 (2005b)ADSGoogle Scholar
  54. Yang, G., Gueguen, Y., Sangleboeuf, J., Rouxel, T., Boussard-Plédel, C., Troles, J., Lucas, P., Bureau, B.: physical properties of the GexSe1−x glasses in the 0 < x < 0.42 range in correlation with their structure. J. Non-Cryst. Solids 377, 54–59 (2013)ADSGoogle Scholar
  55. Zhou, W., Paesler, M., Sayers, D.E.: Structure of germanium–selenium glasses: an X-ray-absorption fine-structure study. Phys. Rev. B 43(3), 2315–2321 (1991)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Moustafa
    • 1
  • Mansour Mohamed
    • 1
    Email author
  • M. A. Abdel-Rahim
    • 1
  1. 1.Physics Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations