A 7.4 kHz, 20-bit image encoder with a CMOS linear image sensor

  • Yusong Mu
  • Jiaqi Jiang
  • Ning Ding
  • Qiliang Ni
  • Yuchun ChangEmail author


This paper presents a unique CMOS linear image sensor for reading the pseudo-random code on the slit disc, focusing on the two aspects of low noise and readout rate. Each pixel is equipped with an exclusive integral readout circuit, and the shape of the pixel also matches the slit disc, making the output signal consistent by up to 99%. After subdivision, the absolute angle data can be captured with an angular resolution of 16 bits and a maximum speed of 7.4 kHz. In addition, decoding and subdivision methods are suitable for high-speed, inexpensive encoder systems.


Integrated optics Sensors Metrological instrumentation Photoelectric device 



National Key Research and Development Program of China (No. 2017YFF0105303). Technology Development Plan Project of Jilin Province of China (No. 20160204064GX).


  1. European Machine Vision Association: EMVA Standard 1288: Standard for Characterization of Image Sensors and Cameras [EB] (2012). October 2018
  2. Feng, Y.Q., Wan, Q.H., Sun, Y., et al.: High resolution interpolation techniques of small photoelectric encoder. Infrared Laser Eng. 42(7), 1825–1829 (2013)Google Scholar
  3. Jin, J., Zhao, L.N., Xu, S.L.: High-precision rotation angle measurement method based on monocular vision. J. Opt. Soc. Am. A 31(7), 1401–1407 (2014)ADSCrossRefGoogle Scholar
  4. Johnson, J.F., Lomheim, T.S.: Focal-plane signal and noise model–CTIA ROIC. J. IEEE Trans. Electron. Devices 56(11), 2506–2515 (2009)ADSCrossRefGoogle Scholar
  5. Kao, C.F., Huang, H.L., Lu, S.H.: Optical encoder based on Fractional–Talbot effect using two-dimensional phase grating. Opt. Commun. 283(9), 1950–1955 (2010)ADSCrossRefGoogle Scholar
  6. Kim, J.-A., Kim, J.W., Kang, C.-S., Jin, J., Eom, T.B.: Absolute angle measurement using a phase-encoded binary graduated disk. Measurement 80, 288–293 (2016)CrossRefGoogle Scholar
  7. Leviton, D.B., Frey, B.J.: Ultra-high resolution, absolute position sensors for cryostatic applications. Proc. SPIE 4850, 776–787 (2003)ADSCrossRefGoogle Scholar
  8. Luo, W., Zhang, Y., et al.: Pixel super resolution using wavelength scanning. Light Sci. Appl. 5, e16060 (2016)CrossRefGoogle Scholar
  9. Mancini, D., Cascone, E., Schpni, P.: Galileo high-resolution encoder system. Proc. SPIE 3112, 328–334 (1997)ADSCrossRefGoogle Scholar
  10. Pertiu, E.M.: Absolute-type position transducers using a pseudorandom encoding. IEEE Trans. Instrum. Meas. 36(4), 950–955 (1987)Google Scholar
  11. Qin, J., Silver, R.M., Barnes, B.M., Zhou, H., Dixson, R.G., Henn, M.-A.: Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization. Light Sci. Appl. 5, e16038 (2016)ADSCrossRefGoogle Scholar
  12. Schreier, R., Silva, J.: Design-oriented estimation of thermal noise in switched-capacitor circuits. J. IEEE Trans. Circuits Syst. I Regul. Pap. 52(11), 2358–2368 (2005)CrossRefGoogle Scholar
  13. Sobieranski, A.C., Inci, F., Tekin, H.C., et al.: Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution. Light Sci. Appl. 4, e346 (2015)CrossRefGoogle Scholar
  14. Song, P., Ye, Z., Huang, A., et al.: Theoretical investigation on input properties of DI and CTIA readout integrated circuit. J. Opt. Quantum Electron. 48(3), 185–192 (2016)CrossRefGoogle Scholar
  15. Sugiyama, Y., Matsui, Y., et al.: A 3.2 kHz, 14-bit optical absolute rotary encoder with a CMOS profile sensor. IEEE Sens. J. 8, 1430–1436 (2008)ADSCrossRefGoogle Scholar
  16. Tomlinson, G.H.: Elimination of error in absolute position encoder using M-sequences. J. Electron. Lett. 23(23), 1372–1374 (1987)CrossRefGoogle Scholar
  17. Tresanchez, M., Pallejà, T., Teixidó, M., Palacín, J.: Using the image acquisition capabilities of the optical mouse sensor to build an absolute rotary encoder. Sens. Actuators A 157, 161–167 (2010)CrossRefGoogle Scholar
  18. Vermeiren, J., Van Bogget, U., et al.: Low-noise, fast frame-rate In Ga As 320 × 256 FPA for hyperspectral applications. In: Conference on Infrared Technology and Applications XXXV, vol. 7298, p. 72983N. International Society for Optics and Photonics (2009)Google Scholar
  19. Yu, H., Wan, Q.H., et al.: Small-size, high-resolution angular displacement measurement technology based on an imaging detector. Appl. Opt. 56(3), 755–760 (2017)ADSCrossRefGoogle Scholar
  20. Yuan, P., Huang, D., et al.: An anti-spot, high-precision subdivision algorithm for linear CCD based single-track absolute encoder. J. Meas. 37(03), 143–154 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yusong Mu
    • 1
  • Jiaqi Jiang
    • 1
  • Ning Ding
    • 1
  • Qiliang Ni
    • 2
  • Yuchun Chang
    • 1
    Email author
  1. 1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina
  2. 2.Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina

Personalised recommendations