Advertisement

Electromagnetic energy flow in confined regions of evanescent waves: wavelength-scale analysis by the method of single expression

  • H. V. BaghdasaryanEmail author
  • T. M. Knyazyan
  • T. T. Hovhannisyan
  • T. Baghdasaryan
  • A. V. Daryan
  • M. Marciniak
Article
  • 9 Downloads

Abstract

An alternative expression for the Poynting vector for monitoring electromagnetic energy flow in confined regions of evanescent waves is presented. This expression is an intrinsic integrable function of the boundary problem solution in the method of single expression (MSE). The peculiarity of the MSE is the fact that it does not exploit the superposition principle by representing solutions of the Helmholtz equation as a sum of counter propagating waves in the medium, but rather considers resulting wave with certain amplitude and phase by solving special set of the MSE equations with backward calculation approach. This permits to have a universal expression for the Poynting vector appropriate both for media of a positive product of permittivity and permeability and of a negative product of these values that is relevant to the region of evanescent waves. For the boundary problem solution carried out numerically by the MSE it is possible to observe distributions of not only electric and magnetic field amplitudes, but also the Poynting vector in any confined media including regions of evanescent waves. The presented alternative expression for the Poynting vector in the MSE is in complete agreement with the traditional representation of the Poynting vector for the medium where it is defined.

Keywords

Evanescent waves Poynting vector Method of single expression Boundary problem solution Numerical analyses Tunneling 

Notes

Acknowledgements

Authors are thankful to the members of COST Action MP 1403, MP 1401, and IRPhE2018 and EuCAP2019 for fruitful discussions. Tigran Baghdasaryan is a postdoctoral Fellow of the Research Foundation—Flanders (FWO).

References

  1. Abeles, F.: Optical properties of metallic films. In: Francome, M.H., Hoffman, R.W. (eds.) Physics of Thin Films, vol. 6, pp. 150–204. Academic Press, Cambridge (1971)Google Scholar
  2. Baghdasaryan, H.V.: Method of backward calculation. In: Guekos, G. (ed.) Photonic Devices for Tele-Communications: How to Model and Measure, pp. 56–65. Springer, Berlin (1999)Google Scholar
  3. Baghdasaryan, H.V., Knyazyan, T.M.: Problem of plane EM wave self-action in multilayer structure: an exact solution. Opt. Quantum Electron. 31, 1059–1072 (1999)CrossRefGoogle Scholar
  4. Baghdasaryan, H.V., Knyazyan, T.M.: Modelling of strongly nonlinear sinusoidal Bragg gratings by the method of single expression. Opt. Quantum Electron. 32, 869–883 (2000)CrossRefGoogle Scholar
  5. Baghdasaryan, H.V., Knyazyan, T.M.: Simulation of amplifying phase-shifted bragg gratings by the method of single expression. Opt. Quantum Electron. 35, 493–506 (2003)CrossRefGoogle Scholar
  6. Baghdasaryan, H.V., Knyazyan, T.M., Mankulov, A.A., Eyramjyan, G.G.: Numerical analysis of thin transparent film influence on reflecting and absorbing properties of metallic mirror. In: ICTON 2006, Nottingham, UK, pp. 213–216 (2006)Google Scholar
  7. Baghdasaryan, H.V., Knyazyan, T.M.: Extension of the method of single expression for analysis of materials with complex permittivity and permeability. In: Proceedings of ICTON 2006, Nottingham, UK, pp. 13–18 (2006)Google Scholar
  8. Baghdasaryan, H.V., Knyazyan, T.M., Eyramjyan, G.G.: Electrodynamical analysis of a transmittive metal-dielectric microstructure by the method of single expression. In: Proceedings of the European Microwave Association, vol. 4, pp. 76–81 (2008a)Google Scholar
  9. Baghdasaryan, H.V., Knyazyan, T.M., Baghdasaryan, T.H.: Novel powerful simulation tool for wavelength-scale analysis of an oblique plane wave interaction with multilayer metamaterial structures. In: Proceedings of 2nd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Pamplona, Spain (2008b)Google Scholar
  10. Baghdasaryan, H.V., Knyazyan, T.M., Baghdasaryan, T.H., Eyramjyan, G.G.: Development of the method of single expression (MSE) for analysis of plane wave oblique incidence on multilayer structures having complex permittivity and permeability. In: Proceedings of ICTON 2008, Athens, Greece, Th.A1.4, pp. 250–254 (2008c)Google Scholar
  11. Baghdasaryan, H.V., Knyazyan, T.M., Baghdasaryan, T.H., Witzigmann, B., Roemer, F.: Absorption loss influence on optical characteristics of multilayer distributed Bragg reflector: wavelength-scale analysis by the method of single expression. Opto-Electron. Rev. 18(4), 438–445 (2010)ADSCrossRefGoogle Scholar
  12. Baghdasaryan, H.V.: Basics of the Method of Single Expression: New Approach for Solving Boundary Problems in Classical Electrodynamics. Chartaraget, Yerevan, Monograph (2013)Google Scholar
  13. Baghdasaryan, H.V., Knyazyan, T.M., Hovhannisyan, T.T., Marciniak, M.: Metal-dielectric multilayer structure supporting surface plasmons: electromagnetic modelling by the method of single expression. Opt. Quantum Electron. 47, 3–15 (2015)CrossRefGoogle Scholar
  14. Baghdasaryan, H.V., Knyazyan, T.M., Hovhannisyan, T.T., Marciniak, M.: Solution of boundary problems in intensity-dependent nano-optics and quantum mechanics by the method of single expression. In: Proceedings of ICTON 2017, Girona, Spain, Tu.B4.3 (2017)Google Scholar
  15. Baghdasaryan, H., Knyazyan, T., Hovhannisyan, T., Marciniak, M.: Universal expression for the Poynting vector applicable for evanescent waves: inherent output from the method of single expression. In: 12th International Congress on Artificial Materials for Novel Wave Phenomena—Metamaterials 2018, Espoo, Finland. pp. 222–224 (2018a)Google Scholar
  16. Baghdasaryan, H.V., Knyazyan, T.M., Hovhannisyan, T.T., Daryan, A.V., Marciniak, M.: An alternative expression of the Poynting vector operating in a confined region of evanescent waves: natural function in the method of single expression. Armen. J. Phys. 11(4), 235–240 (2018b)Google Scholar
  17. Baghdasaryan, H.V., Knyazyan, T.M., Hovhannisyan, T.T., Daryan, A.V., Marciniak M.: Monitoring of electromagnetic energy flow in a confined region of evanescent waves by an alternative expression for the Poynting vector. In: 13th European Conference on Antennas and Propagation (EuCAP 2019), Krakow, Poland. pp. 2277–2281 (2019)Google Scholar
  18. Bekefi, G., Barrett, A.H.: Electromagnetic Vibrations, Waves, and Radiation. The MIT Press, Cambridge (1977)Google Scholar
  19. Bertolotti, M., Sibilia, C., Guzmán, A.M.: Evanescent Waves in Optics: An Introduction to Plasmonics. Springer, Berlin (2017)CrossRefGoogle Scholar
  20. Bohm, D.: Quantum Theory. Dover republication, Prentice-Hall Inc., New-York, 1951 (2012)Google Scholar
  21. Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (2002)Google Scholar
  22. Courjon, D.: Near Field Microscopy and Near Field Optics. Imperial College Press, London (2003)CrossRefGoogle Scholar
  23. de Fornel, F.: Evanescent Waves from Newtonian Optics to Atomic Optics. Springer, Berlin (1997)Google Scholar
  24. Deparis, O.: Poynting vector in transfer-matrix formalism for the calculation of light absorption profile in stratified isotropic optical media. Opt. Lett. 36(20), 3960–3962 (2011)ADSCrossRefGoogle Scholar
  25. Enders, A., Nimtz, G.: Photonic-tunneling experiments. Phys. Rev. B 47(15), 9605–9609 (1993)ADSCrossRefGoogle Scholar
  26. Eyramjyan, G.G., Baghdasaryan, H.V., Knyazyan T.M.: Modelling of transparent in visible range metal-dielectric multilayer structure by the MSE. In: Proceedings ICTON 2007, We.P.25, pp. 305–308 (2007)Google Scholar
  27. Gaponenko, S.V.: Introduction to Nanophotonics. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  28. Griffiths, D.J.: Quantum Mechanics. Cambridge University Press, Cambridge (2017)zbMATHGoogle Scholar
  29. Griffiths, D.J., Steinke, C.A.: Waves in locally periodic media. Am. J. Phys. 69(2), 137–154 (2001)ADSCrossRefGoogle Scholar
  30. Heavens, O.S.: Optical Properties of Thin Solid Films. Dover Publications Inc., Mineola (1965)Google Scholar
  31. Hecht, E.: Optics. Addison Wesley, Boston (2002)Google Scholar
  32. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1962)zbMATHGoogle Scholar
  33. Knittel, Z.: Optics of Thin Films. Wiley, New York (1976)Google Scholar
  34. Kotynski, R., Baghdasaryan, H., Stefaniuk, T., Pastuszczak, A., Marciniak, M., Lavrinenko, A., Panajotov, K., Szoplik, T.: Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies. Opto-Electron. Rev. 18(4), 446–457 (2010)ADSGoogle Scholar
  35. Kraus, J.D.: Electromagnetics. McGraw-Hill Inc., New York (1984)zbMATHGoogle Scholar
  36. Landau, L.D., Lifshitz, M.: Quantum Mechanics: Non-relativistic Theory. Elsevier, Amsterdam (1981)zbMATHGoogle Scholar
  37. Landau, L.D., Lifshits, E.M., Pitaevsii, L.P.: Electrodynamics of Continuous Media, 2nd edn. Pergamon Press, Oxford (1984)Google Scholar
  38. Liddell, H.M.: Computer-Aided Techniques for the Design of Multilayer Filters. IOP Publishing Ltd., Bristol (1981)Google Scholar
  39. Novotny, L., Hecht, B.: Principles of Nano-Optics. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  40. Pozar, D.M.: Microwave Engineering. Wiley, New York (2009)Google Scholar
  41. Ramo, S., Whinnery, J.R., Van Duzer, T.: Field and Waves in Communication Electronics. Wiley, New York (2008)Google Scholar
  42. Stratton, J.A.: Electromagnetic Theory. McGraw – Hill Book Company, Inc, New York (1941)zbMATHGoogle Scholar
  43. Vörös, Z., Johnsen, R.: A simple demonstration of frustrated total internal reflection. Am. J. Phys. 76(8), 746–749 (2008)ADSCrossRefGoogle Scholar
  44. Zhang, K., Li, D.: Elctromagnetic Theory for Microwaves and Optoelectronics. Springer, Berlin (2008)Google Scholar
  45. Zheng, L., Zhao, Q., Xing, X.J.: Effect of plasma on electromagnetic wave propagation and THz communication for reentry flight. ACES J. 30(11), 1241–1245 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fiber Optics Communication LaboratoryNational Polytechnic University of ArmeniaYerevanArmenia
  2. 2.Department of Applied Physics and Photonics (TONA), Photonics (B-PHOT)Vrije Universiteit Brussel (VUB)BrusselsBelgium
  3. 3.Cosmic Ray DivisionA. Alikhanyan National LaboratoryYerevanArmenia
  4. 4.National Institute of TelecommunicationsWarsawPoland

Personalised recommendations