Optical behavior and TL kinetics of Eu3+ and Tb3+ doped zirconate thermoluminescent phosphors

  • Shambhavi Katyayan
  • Sadhana AgrawalEmail author


The influence of Tb3+ and Eu3+ ions on the optical behavior and TL kinetics of the synthesized phosphors were analyzed here. The AZrO3 (A = Ca, Ba, Sr) phosphors activated with Eu3+ and Tb3+ ions were prepared using solid state reaction technique. The doping concentration of Eu3+ and Tb3+ ions is varied from 0 to 2 mol% for each. The PXRD analysis is done to study various crystallographic aspects of synthesized phosphors. It confirms the crystalline structure, phase purity and homogeneity of synthesized phosphors. The FESEM and TEM analyses show formation of particles with irregular shape and variable dimensions. The agglomeration of these particles is a resultant of prolonged heat treatments involved in solid state reaction method at elevated temperatures. The study of TL spectra of UV and gamma irradiated phosphors set forth their second order kinetics. The electrons were trapped in trap centers with high trap depth and hence high amount of energy (~ 3 eV) is required to vacate them. The doping of trivalent rare earth impurity ions in the perovskite host lattice leads to formation of these traps centers. With enhanced TL intensity and low fading characteristics, these phosphors are suitable alternatives for TL mapping and sensing applications.


Perovskites Thermoluminscence Trap depth Activation energy Order of kinetics 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Daniel, D.J., Annalakshmi, O., Madhusoodanan, U., Ramasamy, P.: Thermoluminescence characteristics and dosimetric aspects of fluoroperovskites (NaMgF3:Eu2+, Ce3+). J. Rare Earths 32, 496–500 (2014)CrossRefGoogle Scholar
  2. Dwivedi, Y., Zilio, S.C.: Advances in rare earth spectroscopy and applications. J. Nanosci. Nanotechnol. 14, 1578–1596 (2014)CrossRefGoogle Scholar
  3. Eeckhout, K.V.D., Bos, A.J.J., Poelman, D., Smet, P.F.: Revealing trap depth distributions in persistent phosphors. Phys. Rev. B 87, 045126 (2013)Google Scholar
  4. Evangeline, B., Abdul Azeem, P., Prasada Rao, R., Swati, G., Haranath, D.: Structural and luminescent features of cerium doped CaZrO3 blue nanophosphors. J. Alloys Compd. 705, 618–662 (2017)CrossRefGoogle Scholar
  5. Gupta, S.K., Mohapatra, M., Natarajan, V., Godbole, S.V.: Photoluminescence investigations of the near white light emitting perovskite ceramic SrZrO3: Dy3+ prepared via gel-combustion route. Int. J. Appl. Ceram. Technol. 10(4), 593–602 (2013)CrossRefGoogle Scholar
  6. Horowitz, Y.S., Yossian, D.: Computerised glow curve deconvolution: application to thermoluminescence dosimetry Radiat. Prot. Dosim. 60, 293–295 (1995)Google Scholar
  7. Ianos, R., Barvinschi, P.: Solution combustion synthesis of calcium zirconate, CaZrO3 powders. J. Solid State Chem. 183, 491–496 (2010)ADSCrossRefGoogle Scholar
  8. Katyayan, S., Agrawal, S.: Structural Investigation of RE doped CZO Perovskites. Optical Society of America, paper Th3A.82 (2016).
  9. Katyayan, S., Agrawal, S.: Synthesis and investigation of structural and optical properties of Eu3+ doped CaZrO3 phosphor. Mater. Today Proc. 4(8), 8016–8024 (2017a). CrossRefGoogle Scholar
  10. Katyayan, S., Agrawal, S.: Investigation of spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide orthorhombic perovskite for optical and sensing applications. J. Mater. Sci. Mater. Electron. 28(24), 18442–18454 (2017b). CrossRefGoogle Scholar
  11. Katyayan, S., Agrawal, S.: Facile molten salt synthesis, structural, morphological and optical studies of ASiO3:Eu2+, Er3+ (A = Ca, Ba, Sr) perovskites. J. Mater. Sci.: Mater. Electron. 29, 16609–16629 (2018a). CrossRefGoogle Scholar
  12. Katyayan, S., Agrawal, S.: Effect of rare earth doping on optical and spectroscopic characteristics of BaZrO3:Eu3+, Tb3+ perovskites. Methods Appl. Fluoresc. 6, 035002 (2018b)ADSCrossRefGoogle Scholar
  13. Katyayan, S., Agrawal, S.: Molten salt synthesis and photoluminescent studies of ATiO3:Eu2+, Yb2+ (A = Ca, Ba, Sr) perovskites phosphors. J. Photonics Energy 8(3), 036001 (2018c). ADSCrossRefGoogle Scholar
  14. Katyayan, S., Agrawal, S.: Dynamics of concentration quenching in Eu3+ and Tb3+ doped calcium dioxide-oxo-zirconium perovskite. J. Mater. Sci. Mater. Electron. 29(3), 2373–2383 (2018d). CrossRefGoogle Scholar
  15. Katyayan, S., Agrawal, S.: Thermoluminescent behavior of UV and γ rays irradiated Eu2+ and Er3+ doped silicate phosphors. Mater. Chem. Phys. 225(1), 384–392 (2019a)CrossRefGoogle Scholar
  16. Katyayan, S., Agrawal, S.: Study of TL kinetic parameters of UV and γ rays irradiated ATiO3:Eu2+, Yb2+ (A = Ca, Ba, Sr) phosphors. J. Mater. Sci. Mater. Electron. 30(11), 10660–10672 (2019b). CrossRefGoogle Scholar
  17. Katyayan, S., Agrawal, S.: Optical behaviour of CaSiO3:Eu2+, Er3+, BaSiO3:Eu2+, Er3+ and SrSiO3:Eu2+, Er3+ phosphors. JOM 71(8), 2899–2905 (2019c). CrossRefGoogle Scholar
  18. Kucuk, N., Gozel, A.H., Yuksel, M., Dogan, T., Topaksu, M.: Thermoluminescence kinetic parameters of different amount La-doped ZnB2O4 Appl. Rad. Isot. 104, 186–191 (2015)CrossRefGoogle Scholar
  19. Liu, X., Zhang, J., Ma, X., Sheng, H., Feng, P., Shi, L., Hu, R., Wang, Y.: Violet–blue up conversion photostimulated luminescence properties and first principles calculations of a novel un-doped CaZrO3 phosphor for application in optical storage. J. Alloys Compd. 550, 451–458 (2013)CrossRefGoogle Scholar
  20. McKeever, S.W.S.: Thermoluminescence of Solids (Cambridge Solid State Science Series). Cambridge University Press, Cambridge (1988)Google Scholar
  21. Rosa, I.L.V., Oliveiraa, M.C., Assis, M., Ferrer, M., André, R.S., Longo, E., Gurgel, M.F.C.: A theoretical investigation of the structural and electronic properties of orthorhombic CaZrO3. Ceram. Int. 41, 3069–3074 (2015)CrossRefGoogle Scholar
  22. Singh, V., Rai, V.K., Al-Shamery, K., HaaseMand Kim, S.H.: NIR to visible frequency upconversion in Er3+ and Yb3+ codoped BaZrO3 phosphor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 108, 141–145 (2013)ADSCrossRefGoogle Scholar
  23. Sun, D., Li, D., Zhu, Z., Xiao, J.: Tao Z and LiuW, Photoluminescence properties of europium and titanium codoped BaZrO3 phosphors powders synthesized by the solid state reaction method Opt. Mater. 34, 1890–1896 (2012)Google Scholar
  24. Thomas, J.K., Padma Kumar, H., Pazhani, R., Solomon, S., Jose, R., Koshy, J.: Synthesis of strontium zirconate as nanocrystals through a single step combustion process. Mater. Lett. 61, 1592–1595 (2007)CrossRefGoogle Scholar
  25. Vali, R.: Band structure and dielectric properties of orthorhombic SrZrO3. Solid State Commun. 145, 497–501 (2008)ADSCrossRefGoogle Scholar
  26. Ye, S., Xiao, F., Pan, Y.X., Ma, Y.Y., Zhang, Q.Y.: Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng. R 71, 1–34 (2010)CrossRefGoogle Scholar
  27. Yuan, Y., Zhang, X., Liu, L., Jiang, X., Lv, J.: Li Z and Zou Z Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3 Int. J. Hydrog. Energy 33, 5941–5946 (2008)CrossRefGoogle Scholar
  28. Zhang, H., Fu, X., Niu, S., Xin, Q.: Synthesis and photoluminescence properties of Eu3+ doped AZrO3(A = Ca, Sr, Ba) perovskite. J. Alloys Compd. 459, 103–106 (2008)CrossRefGoogle Scholar
  29. Zhang, A., Lu, M., Zhou, G., Zhou, Y., Qiu, Z., Ma, Q.: Synthesis, characterization and luminescence of Eu3+ doped SrZrO3 nanocrystals. J. Alloys Compd. 468, L17–L20 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology RaipurRaipurIndia

Personalised recommendations