Advertisement

Optoelectronic properties of germanium iodide perovskites AGeI3 (A = K, Rb and Cs): first principles investigations

  • M. Houari
  • B. BouadjemiEmail author
  • M. Matougui
  • S. Haid
  • T. Lantri
  • Z. Aziz
  • S. Bentata
  • B. Bouhafs
Article
  • 108 Downloads

Abstract

In this paper, we have investigated the structural, optoelectronic and elastic properties of AGeI3 (A = K, Rb and Cs) using the density functional theory with generalized gradient approximation (GGA) for potential exchange correlation. The modified Becke–Johnson (mBJ-GGA) potential approximation is also used for calculating the optoelectronic properties of the material. The results show that the band structure of the perovskites AGeI3 (have a semiconductor behavior with direct band gap at R–R direction, the gap energy values calculated with mBJ-GGA, for each compound as following: 0.58, 0.63, and 0.71 eV, respectively. The optical properties, such as real and imaginary parts of the dielectric functions, refractive index, reflectivity, conductivity and absorption coefficient are investigated. As results, these compounds are competent candidates photovoltaic application like light harvester.

Keywords

Density functional theory (DFT) Halide perovskites Semiconductor Optoelectronic properties 

Notes

References

  1. Andalibi, S., Rostami, A., Darvish, G., Moravvej-Farshi, M.K.: Band gap engineering of organo metal lead halide perovskite photovoltaic absorber. Opt. Quantum Electron. 48, 258 (2016).  https://doi.org/10.1007/s11082-016-0525-y
  2. Azahaf, C., Zaari, H., Abbassi, A., Ez-Zahraouy, H., Benyoussef, A.: The investigation of pressure effect on the optical properties, spontaneous polarization and effective mass of BaHfO3: ab initio study. Opt. Quantum Electron. 48, 386 (2016).  https://doi.org/10.1007/s11082-016-0652-5
  3. Becke, A.D., Johnson, E.R.: A Simple Effective Potential for Exchange. AIP, College Park (2006)CrossRefGoogle Scholar
  4. Becke, A., Roussel, M.: Exchange holes in inhomogeneous systems: a coordinate-space model. Phys. Rev. A 39, 3761 (1989).  https://doi.org/10.1103/PhysRevA.39.3761 ADSCrossRefGoogle Scholar
  5. Benatmane, S., Beldi, L., Bendaoud, H., Méçabih, S., Abbar, B., Bouhafs, B.: Spin-polarized optical properties of half-metallic binary XBi (X = Ca, Sr and Ba) compounds in zinc blende and wurtzite phases, Indian J. Phys. 93, 1–12 (2018)Google Scholar
  6. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k-An augmented plane wave & local orbital program for calculating crystal properties. Techn. Universitat Wien, Austria (2001)Google Scholar
  7. Camargo-Martinez, J., Baquero, R.: Performance of the modified Becke-Johnson potential for semiconductors. Phys. Rev. B 86, 195106 (2012).  https://doi.org/10.1103/PhysRevB.86.195106
  8. Deschler, F., Price, M., Pathak, S., Klintberg, L.E., Jarausch, D.-D., Higler, R., et al.: High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014)CrossRefGoogle Scholar
  9. Dufek, P., Blaha, P., Schwarz, K.: Applications of Engel and Vosko’s generalized gradient approximation in solids. Phys. Rev. B 50, 7279–7283 (1994)ADSCrossRefGoogle Scholar
  10. Engel, E., Vosko, S.H.: Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys. Rev. B 47, 13164–13174 (1993)ADSCrossRefGoogle Scholar
  11. Even, J., Pedesseau, L., Jancu, J.M., Katan, C.: DFT and k· p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys. Status Solidi (RRL) Rapid Res. Lett. 8, 31–35 (2014)ADSCrossRefGoogle Scholar
  12. Fergus, J.W.: Perovskite oxides for semiconductor-based gas sensors. Sensors Actuators B Chem. 123, 1169–1179 (2007)CrossRefGoogle Scholar
  13. Fu, H., Bellaiche, L.: Ferroelectricity in barium titanate quantum dots and wires. Phys. Rev. Lett. 91, 257601 (2003).  https://doi.org/10.1103/PhysRevLett.91.257601
  14. Gutiérrez, G., Menéndez-Proupin, E., Singh, A.K.: Elastic properties of the bcc structure of bismuth at high pressure. J. Appl. Phys. 99, 103504 (2006).  https://doi.org/10.1063/1.2195421 ADSCrossRefGoogle Scholar
  15. Haid, S., Bouadjemi, B., Houari, M., Matougui, M., Lantri, T., Bentata, S., et al.: Investigation of DFT + U effect of Holmium rare-earth on the electronic, magnetic and the half-metallic ferromagnetic properties’ of double perovskite Ba2HoReO6. Solid State Commun. 294, 29–35 (2019)ADSCrossRefGoogle Scholar
  16. Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P., Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489 (2014).  https://doi.org/10.1038/nphoton.2014.82 ADSCrossRefGoogle Scholar
  17. He, Y., Galli, G.: Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3 (A = Pb and Sn). Chem. Mater. 26, 5394–5400 (2014)CrossRefGoogle Scholar
  18. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)ADSMathSciNetCrossRefGoogle Scholar
  19. Houari, M., Bouadjemi, B., Abbad, A., Benstaali, W., Haid, S., Lantri, T., et al.: Structural, electronic and optical properties of cubic fluoroelpasolite Cs2NaYF6 by density functional theory. Chin. J. Phys. 56, 1756–1763 (2018)CrossRefGoogle Scholar
  20. Houari, M., Bouadjemi, B., Haid, S., Matougui, M., Lantri, T., Aziz, Z. et al.: Semiconductor behavior of halide perovskites AGeX3 (A = K, Rb and Cs; X = F, Cl and Br): first-principles calculations, Indian J. Phys. 97, 1–13 (2019)Google Scholar
  21. Huang, L.-Y., Lambrecht, W.R.: Vibrational spectra and nonlinear optical coefficients of rhombohedral CsGeX3 halide compounds with X = I, Br, Cl. Phys. Rev. B 94, 115202 (2016).  https://doi.org/10.1103/PhysRevB.94.115202
  22. Kieslich, G., Sun, S., Cheetham, A.K.: An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6, 3430–3433 (2015)CrossRefGoogle Scholar
  23. Kocak, B., Ciftci, Y.O., Colakoglu, K., Deligoz, E.: Structural, elastic, thermodynamic and lattice dynamic properties of Pr X (X = Sb, Bi). Int. J. Mater. Res. 104, 99–108 (2013)CrossRefGoogle Scholar
  24. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)ADSMathSciNetCrossRefGoogle Scholar
  25. Körbel, S., Marques, M.A., Botti, S.: Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J. Mater. Chem. C 4, 3157–3167 (2016)CrossRefGoogle Scholar
  26. Krishnamoorthy, T., Ding, H., Yan, C., Leong, W.L., Baikie, T., Zhang, Z., et al.: Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3, 23829–23832 (2015)CrossRefGoogle Scholar
  27. Luaña, V., Costales, A., Pendás, A.M., Flórez, M., Fernández, V.M.G.: Structural and chemical stability of halide perovskites. Solid State Commun. 104, 47–50 (1997)ADSCrossRefGoogle Scholar
  28. Mehl, M.J., Klein, B.M., Papaconstantopoulos, D.A.: First Principles Calculations of Elastic Properties of Metals, vol. 1, pp. 195–210. Wiley, London (1994)Google Scholar
  29. Meziani, A., Heciri, D., Belkhir, H.: Structural, electronic, elastic and optical properties of fluoro-perovskite KZnF3. Physica B 406, 3646–3652 (2011)ADSCrossRefGoogle Scholar
  30. Moskvin, A., Makhnev, A., Nomerovannaya, L., Loshkareva, N., Balbashov, A.: Interplay of p − d and d − d charge transfer transitions in rare-earth perovskite manganites. Phys. Rev. B 82, 035106 (2010).  https://doi.org/10.1103/PhysRevB.82.035106
  31. Murnaghan, F.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 244–247 (1944)ADSMathSciNetCrossRefGoogle Scholar
  32. Murtaza, G., Ahmad, I., Afaq, A.: Shift of indirect to direct bandgap in going from K to Cs in MCaF3 (M = K, Rb, Cs). Solid State Sci. 16, 152–157 (2013)ADSCrossRefGoogle Scholar
  33. Naeem, S., Murtaza, G., Khenata, R., Khalid, M.: First principle study of CsSrM3 (M = F, Cl). Physica B Condens. Matter 414, 91–96 (2013)ADSCrossRefGoogle Scholar
  34. Nelson, K., Mao, Z., Maeno, Y., Liu, Y.: Odd-parity superconductivity in Sr2RuO4. Science 306, 1151–1154 (2004)ADSCrossRefGoogle Scholar
  35. Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., et al.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014)CrossRefGoogle Scholar
  36. Peiponen, K.-E., Lucarini, V., Vartiainen, E., Saarinen, J.: Kramers–Kronig relations and sum rules of negative refractive index media. Eur. Phys. J. B Condens. Matter Complex Syst. 41, 61–65 (2004)CrossRefGoogle Scholar
  37. Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)ADSCrossRefGoogle Scholar
  38. Perdew, J., Burke, K., Ernzerhof, M.: Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998)ADSCrossRefGoogle Scholar
  39. Pugh, S.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823–843 (1954)CrossRefGoogle Scholar
  40. Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008).  https://doi.org/10.1103/PhysRevLett.101.055504
  41. Roknuzzaman, M., Ostrikov, K.K., Wang, H., Du, A., Tesfamichael, T.: Towards lead-free perovskite photovoltaics and optoelectronics by ab initio simulations. Sci. Rep. 7, 14025 (2017).  https://doi.org/10.1038/s41598-017-13172-y
  42. Rolland, A., Pedesseau, L., Kepenekian, M., Katan, C., Huang, Y., Wang, S., et al.: Computational analysis of hybrid perovskite on silicon 2-T tandem solar cells based on a Si tunnel junction. Opt. Quantum Electron. 50, 21 (2018).  https://doi.org/10.1007/s11082-017-1284-0
  43. Sahli, B., Bouafia, H., Abidri, B., Bouaza, A., Akriche, A., Hiadsi, S., et al.: Study of hydrostatic pressure effect on structural, mechanical, electronic and optical properties of KMgF3, K 0. 5 Na 0. 5 MgF3 and NaMgF3 cubic fluoro-perovskites via ab initio calculations. Int. J. Mod. Phys. B 30, 1650230 (2016).  https://doi.org/10.1142/S0217979216502301 ADSCrossRefGoogle Scholar
  44. Sajwan, R.K., Tiwari, S., Harshit, T., Singh, A.K.: Recent progress in multicolor tuning of rare earth-doped gadolinium aluminate phosphors GdAlO3. Opt. Quantum Electron. 49, 344 (2017).  https://doi.org/10.1007/s11082-017-1158-5
  45. Singh, D.: Ground-state properties of lanthanum: treatment of extended-core states. Phys. Rev. B 43, 6388–6392 (1991)ADSCrossRefGoogle Scholar
  46. Sjöstedt, E., Nordström, L., Singh, D.: An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114, 15–20 (2000)ADSCrossRefGoogle Scholar
  47. Slater, J.C.: Wave functions in a periodic potential. Phys. Rev. 51, 846–851 (1937)ADSCrossRefGoogle Scholar
  48. Stoumpos, C.C., Malliakas, C.D., Peters, J.A., Liu, Z., Sebastian, M., Im, J., et al.: Crystal growth of the perovskite semiconductor CsPbBr 3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013)CrossRefGoogle Scholar
  49. Stoumpos, C.C., Frazer, L., Clark, D.J., Kim, Y.S., Rhim, S.H., Freeman, A.J., et al.: Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015)CrossRefGoogle Scholar
  50. Sun, J., Wang, H.-T., He, J., Tian, Y.: Ab initio investigations of optical properties of the high-pressure phases of ZnO. Phys. Rev. B 71, 125132 (2005).  https://doi.org/10.1103/PhysRevB.71.125132
  51. Tang, L.-C., Chang, Y.-C., Huang, J.-Y., Lee, M.-H., Chang, C.-S.: First principles calculations of linear and second-order optical responses in rhombohedrally distorted perovskite ternary halides, CsGeX3 (X = Cl, Br, and I). Jpn. J. Appl. Phys. 48, 112402 (2009).  https://doi.org/10.1143/JJAP.48.112402 ADSCrossRefGoogle Scholar
  52. Tao, S.X., Cao, X., Bobbert, P.A.: Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense. Sci. Rep. 7, 14386 (2017).  https://doi.org/10.1038/s41598-017-14435-4
  53. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).  https://doi.org/10.1103/PhysRevLett.102.226401
  54. Tran, F., Blaha, P., Schwarz, K.: Band gap calculations with Becke-Johnson exchange potential. J. Phys. Condens. Matter 19, 196208 (2007).  https://doi.org/10.1088/0953-8984/19/19/196208 ADSGoogle Scholar
  55. Tvergaard, V., Hutchinson, J.W.: Microcracking in ceramics induced by thermal expansion or elastic anisotropy. J. Am. Ceram. Soc. 71, 157–166 (1988)ADSCrossRefGoogle Scholar
  56. Ubic, R., Subodh, G.: The prediction of lattice constants in orthorhombic perovskites. J. Alloys Compd. 488, 374–379 (2009)CrossRefGoogle Scholar
  57. Volonakis, G., Sakai, N., Snaith, H.J., Giustino, F.: Oxide analogs of halide perovskites and the new semiconductor Ba2AgIO6. J. Phys. Chem. Lett. 10, 1722–1728 (2019)CrossRefGoogle Scholar
  58. Wang, L.J., Kuzmich, A., Dogariu, A.: Correction: gain-assisted superluminal light propagation. Nature 411, 277–279 (2001).  https://doi.org/10.1038/35018520 CrossRefGoogle Scholar
  59. Wang, K., Li, G., Wang, S., Liu, S., Sun, W., Huang, C., et al.: Dark-field sensors based on organometallic halide perovskite microlasers. Adv. Mater. 30, 1801481 (2018).  https://doi.org/10.1002/adma.201801481 CrossRefGoogle Scholar
  60. Whalley, L.D., Frost, J.M., Jung, Y.-K., Walsh, A.: Perspective: theory and simulation of hybrid halide perovskites. J. Chem. Phys. 146, 220901 (2017).  https://doi.org/10.1063/1.4984964 ADSCrossRefGoogle Scholar
  61. Xiao, Z., Yan, Y.: Progress in theoretical study of metal halide perovskite solar cell materials. Adv. Energy Mater. 7, 1701136 (2017).  https://doi.org/10.1002/aenm.201701136 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Technology and of Solids PropertiesAbdelhamid Ibn Badis UniversityMostaganemAlgeria
  2. 2.Mustapha Stambouli University of MascaraMascaraAlgeria
  3. 3.Laboratoire de Modélisation et Simulation en Sciences des MatériauxUniversité Djillali Liabès de Sidi Bel-AbbèsSidi Bel AbbèsAlgeria

Personalised recommendations