Narrow and wide band tunable absorbers based on gold squares dispersed in liquid crystal

  • Reza Rashiditabar
  • Najmeh NozhatEmail author


In this paper, the absorption behavior of gold squares with different sizes has been investigated. Our study includes gold squares in two, three and four different sizes dispersed in liquid crystal to propose an absorber with post fabrication tunability. In this case, more than 95% narrow band as well as wide band absorptions have been obtained when two and three sizes of gold squares have been used. Moreover, wide band absorption spectrum with the full width at half maximum of about 0.31 µm has been obtained when there are four different sizes of gold squares in our structure. Also, graphene has been utilized to boost the narrow band absorption from about 80 to 95%.


Absorber Liquid crystal Localized surface plasmon resonance (LSPR) Graphene 



  1. Alaee, R., Farhat, M., Rockstuhl, C., Lederer, F.: A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 27, 28017–28024 (2012)ADSCrossRefGoogle Scholar
  2. Baxter, G., Frisken, S., Abakoumov, D., Zhou, H., Clarke, I., Bartos, A., Poole, S.: Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements. In: Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC IEEE, pp. 1–8 (2006)Google Scholar
  3. Gao, L., Lemarchand, F., Lequime, M.: Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs. J. Eur. Opt. Soc. Rapid. Publ. 8, 15734–15751 (2013)CrossRefGoogle Scholar
  4. Hendrickson, J., Guo, J., Zhang, B., Buchwald, W., Soref, R.: Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Opt. Lett. 3, 371–373 (2012)ADSCrossRefGoogle Scholar
  5. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev B. 12, 4370–4379 (1972)ADSCrossRefGoogle Scholar
  6. Karampour, N., Nozhat, N.: Ultra-wideband polarization insensitive UT-shaped metamaterial absorber. Photon. Nanostruct. Fund. Appl. 24, 35–40 (2017)ADSCrossRefGoogle Scholar
  7. Khoo, I.C.: Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena. Wiley, Chichester (2007)CrossRefGoogle Scholar
  8. Khoo, I., Werner, D., Liang, X., Diaz, A., Weiner, B.: Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes. Opt. Lett. 17, 2592–2594 (2006)ADSCrossRefGoogle Scholar
  9. Li, G., Chen, X., Li, O., Shao, C., Jiang, Y., Huang, L., Ni, B., Hu, W., Lu, W.: A novel plasmonic resonance sensor based on an infrared perfect absorber. J. Phys. D Appl. Phys. 45, 205102-1–205102-5 (2012)ADSGoogle Scholar
  10. Lu, H., Cumming, B.P., Gu, M.: Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths. Opt. Lett. 15, 3647–3650 (2015)ADSCrossRefGoogle Scholar
  11. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)ADSCrossRefGoogle Scholar
  12. Rashiditabar, R., Nozhat, N., Zare, M.S.: Tunable plasmonic absorber based on TiN-nanosphere liquid crystal hybrid in visible and near-infrared regions. Plasmonics 13(6), 1853–1859 (2018)CrossRefGoogle Scholar
  13. Scherschener, E., Perciante, C.D., Dalchiele, E.A., Frins, E.M., Korn, M., Ferrari, J.A.: Polymer-dispersed liquid-crystal voltage sensor. Appl. Opt. 15, 3482–3488 (2006)ADSCrossRefGoogle Scholar
  14. Su, Z., Yin, J., Zhao, X.: Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption. Sci. Rep. 5, 1–9 (2015)Google Scholar
  15. Tao, H., Bingham, C., Pilon, D., Fan, K., Strikwerda, A., Shrekenhamer, D., Padilla, W., Zhang, X., Averitt, R.: A dual band terahertz metamaterial absorber. J. Phys. D Appl. Phys. 22, 225102-1–225102-5 (2010)ADSGoogle Scholar
  16. Wang, Y.: Voltage-induced color-selective absorption with surface plasmons. Appl. Phys. Lett. 19, 2759–2761 (1995)ADSCrossRefGoogle Scholar
  17. Yang, D.K.: Fundamentals of Liquid Crystal Devices. Wiley, Chichester (2014)Google Scholar
  18. Zare, M.S., Nozhat, N., Rashiditabar, R.: Improving the absorption of a plasmonic absorber using a single layer of graphene at telecommunication wavelengths. Appl. Optim. 34, 9764–9768 (2016)ADSCrossRefGoogle Scholar
  19. Zhang, B., Hendrickson, J., Guo, J.: Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. JOSA B. 3, 656–662 (2013)ADSCrossRefGoogle Scholar
  20. Zhao, Y., Hao, Q., Ma, Y., Lu, M., Zhang, B., Lapsley, M., Khoo, I.C., Jun Huang, T.: Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array. Appl. Phys. Lett. 5, 053119-1–053119-4 (2012)ADSGoogle Scholar
  21. Zhao, B., Zhao, J., Zhang, Z.: Enhancement of near-infrared absorption in graphene with metal gratings. Appl. Phys. Lett. 3, 031905-1–031905-4 (2014)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShiraz University of TechnologyShirazIran

Personalised recommendations