Prepared σ-MnO2 thin films by chemical bath deposition methods and study of its optical and microstructure properties

  • Bandar AstinchapEmail author
  • Rostam Moradian
  • Tahereh Namdari
  • Stanislav Jurečka
  • Ştefan Ţălu


In this work, σ-MnO2 thin films deposited by chemical bath deposition method at three concentration of solution. The influence of concentration on thickness, micromorphology and optical parameters were investigated by XRD, SEM, UV–Vis spectrophotometer, atomic force microscopic and multifractal analyses. The optical band gap of thin films is decreased with increase in concentration. The optical parameters: refractive index and real part of dielectric constant are increased with increase in concentration, but decrease in extinction coefficient and imaginary parts of dielectric constant are observed. The micromorphology and roughness of layers surface are changed as function of concentration. The studied samples have multifractal properties and can be included in computer algorithms useful for graphical representation of 3-D microtexture surfaces of σ-MnO2 thin films.


Chemical bath deposition Thin films Concentration MnO2 Multifractal analysis Optical properties 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abdolghaderi, S., Astinchap, B., Shafiekhani, A.: Electrical percolation threshold in Ag–DLC nanocomposite films prepared by RF-sputtering and RF-PECVD in acetylene plasma. J. Mater. Sci. Mater. Electron. 27(7), 6713–6720 (2016)CrossRefGoogle Scholar
  2. Al-Kuhaili, M.F.: Chemical and optical properties of thermally evaporated manganese oxide thin films. J. Vac. Sci. Technol. A 24(5), 1746–1750 (2006)CrossRefGoogle Scholar
  3. Anwar, M., Hogartoh, C.A.: Optical properties of amorphous thin films of MoO3 deposited by vacuum evaporation. Phys. Stat. Sol. 109, 469–478 (1988)ADSCrossRefGoogle Scholar
  4. Arman, A., Ţălu, Ş., Luna, C., Ahmadpourian, A., Naseri, M., Molamohammadi, M.: Micromorphology characterization of copper thin films by AFM and fractal analysis. J. Mater. Sci. Mater. Electron. 26, 9630–9639 (2015)CrossRefGoogle Scholar
  5. Astinchap, B.: Fractal and statistical characterization of Ti thin films deposited by RF-magnetron sputtering: the effects of deposition time. Optik 178, 231–242 (2019)ADSCrossRefGoogle Scholar
  6. Astinchap, B., Laelabadi, K.G.: Effects of substrate temperature and precursor amount on optical properties and microstructure of CVD deposited amorphous TiO2 thin films. J. Phys. Chem. Solids 129, 217–226 (2019)ADSCrossRefGoogle Scholar
  7. Astinchap, B., Moradian, R., Gholami, K.: Effect of sputtering power on optical properties of prepared TiO2 thin films by thermal oxidation of sputtered Ti layers. Mater. Sci. Semicond. Process. 63, 169–175 (2017)CrossRefGoogle Scholar
  8. Bastami, T.R., Entezari, M.H.: Sono-synthesis of Mn3O4 nanoparticles in different media without additives. Chem. Eng. J. 164, 261–266 (2010)CrossRefGoogle Scholar
  9. Bellingham, J.R., Phillips, W.A., Adkins, C.J.: Electrical and optical properties of amorphous indium oxide. J. Phys. Condens. Matter 2, 6207–6221 (1990)ADSCrossRefGoogle Scholar
  10. Bhide, V.G., Damle, R.V.: Dielectric properties of manganese dioxide. Physica 26, 33–42 (1960)ADSCrossRefGoogle Scholar
  11. Bhide, V.G., Damle, R.V.: Electrical conductivity in oxides of manganese and related compounds. Physical 27, 821–826 (1961)ADSGoogle Scholar
  12. Chhabra, A.B., Meneveau, C., Jensen, R.V., Sreenivasan, K.R.: Direct determination of the f(alpha) singularity spectrum and its application to fully developed turbulence. Phys. Rev. A 40(9), 5284–5294 (1989)ADSCrossRefGoogle Scholar
  13. Du, Y., Zheng, G., Wang, J., Wang, L., Wu, J., Dai, H.: MnO2 nanowires in situ grown on diatomite: highly efficient absorbents for the removal of Cr(VI) and As(V). Microporous Mesoporous Mater. 200, 27–34 (2014)CrossRefGoogle Scholar
  14. Elenkova, D., Zaharieva, J., Getsova, M., Manolov, I., Milanova, M., Stach, S., Ţălu, Ş.: Morphology and optical properties of SiO2-based composite thin films with immobilized Terbium(III) complex with a biscoumarin derivative. Int. J. Polym. Anal. Charact. 20, 42–56 (2015)CrossRefGoogle Scholar
  15. Fau, P., Bonino, J.P., Rousset, A.: Electrical properties of sputtered MnO2 thin films. Appl. Surf. Sci. 78, 203–210 (1994a)ADSCrossRefGoogle Scholar
  16. Fau, P., Bonino, J.P., Rousset, A.: Electrical properties of sputtered MnO2 thin films. Appl. Surf. Sci. 78(2), 203–210 (1994b)ADSCrossRefGoogle Scholar
  17. Ghosh, C., Varma, B.P.: Optical properties of amorphous and crystalline Sb2S3 thin films. Thin Solid Films 60, 61–65 (1971)ADSCrossRefGoogle Scholar
  18. Gwyddion 2.37 software (Copyright©2004–2007, 2009–2014 Petr Klapetek, David Nečas, Christopher Anderson) (2018). Accessed 10 April 2018
  19. Klug, H.P., Alexander, L.E.: X-ray Diffraction Procedures Polycrys-Talline and Amorphous Materials, p. 512. Wiley, New York (1954)Google Scholar
  20. Kwon, J.Y., Lee, D.J., Kim, K.B.: Transparent amorphous oxide semiconductor thin film transistor. Electron. Mater. Lett. 71, 1–11 (2011)ADSCrossRefGoogle Scholar
  21. Lio, Z., Xing, Y., Chen, C., Zhao, L., Suib, L.S.: Framework doping of Indium in manganese oxide materials: synthesis, characterization and electro catalytic reduction of oxygen. Chem. Mater. 20, 2069–2071 (2008)CrossRefGoogle Scholar
  22. Long, J.W., Qadir, L.R., Stroud, R.M., Rolison, D.R.: Specter electrochemical investigations of cation-insertion reactions at sol–gel-derived nanostructured, mesoporous thin films of manganese oxide. J. Phys. Chem. B 105, 8712–8717 (2001)CrossRefGoogle Scholar
  23. Maneeshya, L.V., Anitha, V.S., Thomas, P.V., Joy, K.: Thickness dependence of structural optical and luminescence properties of BaTiO3 thin films prepared by RF magnetron sputtering. J. Mater. Sci. Mater. Electron. 26(5), 2947–2954 (2015)CrossRefGoogle Scholar
  24. Manouchehri, I., Gholami, K., Astinchap, B., Mordian, R., Mehrparvar, D.: Investigation of annealing effects on optical properties of Ti thin films deposited by RF magnetron sputtering. Optik 127(13), 5383–5389 (2016)ADSCrossRefGoogle Scholar
  25. Mansouri Majd, S., Salimi, A., Astinchap, B.: Label-free attomolar detection of lactate based on radio frequency sputtered of nickel oxide thin film field effect transistor. Biosens. Bioelectron. 28(3), 493–502 (2016)Google Scholar
  26. Merritt, A.R., Rajagopalan, R., Carter, J.D.: Synthesis of electro-active manganese oxide thin films by plasma enhanced chemical vapor deposition. Thin Solid Films 556, 28–34 (2014)ADSCrossRefGoogle Scholar
  27. Mohammed, H.N., Dahshan, A.: Facile synthesis and optical band gap calculation of Mn3O4 nanoparticles. Mater. Chem. Phys. 137, 637–643 (2012)CrossRefGoogle Scholar
  28. Mott, N.F., Davis, E.A.: Electronic Processes in Non-crystalline Materials. Clarendon Press, Oxford (1971)Google Scholar
  29. Neishi, K., Aki, S., Matsumoto, K., Sato, H., Itoh, H., Hosaka, S., Koike, J.: Formation of a manganese oxide barrier layer with thermal chemical vapor deposition for advanced large-scale integrated interconnect structure. Appl. Phys. Lett. 93, 032106 (2008)ADSCrossRefGoogle Scholar
  30. Pandey, B.K., Shahi, A.K., Gopal, R.: Optical and electrical transport properties of MnO nanoparticles. J. ASP 283, 430–437 (2013)Google Scholar
  31. Pang, S.C., Wee, B.H., Chin, S.F.: The capacitive behaviors of manganese dioxide thin film electrochemical capacitor prototypes. Int. J. Electrochem. 2011, 397685 (2011)Google Scholar
  32. Ramazanov, S., Ţălu, Ş., Sobola, D., Stach, S., Ramazanov, G.: Epitaxy of silicon carbide on silicon: micromorphological analysis of growth surface evolution. Superlattices Microstruct. 86, 395–402 (2015)CrossRefGoogle Scholar
  33. Relekar, B.P., Lohar, G.M., Indapure, P.S., Punde, S.T., Jadhav, S.T., Dhygude, H.D., Fulari, V.J.: Galvanostatically deposited MnO2 thin film and their electrochemical properties. Mater. Focus 5(6), 577–579 (2016)CrossRefGoogle Scholar
  34. Salimi, A., Mansouri Majd, S., Astinchap, B.: Manganese oxide nanoparticles/reduced graphene oxide as novel electrochemical platform for immobilization of FAD and its application as highly sensitive persulfate sensor. Electroanalysis 28(3), 493–502 (2015)Google Scholar
  35. Smith, R.A.: Semiconductors, 2nd edn. Cambridge University Press, Cambridge (1978)zbMATHGoogle Scholar
  36. Stach, S., Dallaeva, D., Ţălu, Ş., Kaspar, P., Tománek, P., Giovanzana, S., Grmela, L.: Morphological features in aluminum nitride epilayers prepared by magnetron sputtering. Mater. Sci. Pol. 33, 175–184 (2015)CrossRefGoogle Scholar
  37. Ţălu, Ş.: Micro and Nanoscale Characterization of Three Dimensional Surfaces. Basics and Applications. Napoca Star Publishing House, Cluj-Napoca (2015)Google Scholar
  38. Ţălu, Ş., Stach, S., Mahajan, A., Pathak, D., Wagner, T., Kumar, A., Bedi, R.K., Ţălu, M.: Multifractal characterization of water soluble copper phthalocyanine based films surfaces. Electron. Mater. Lett. 10(4), 719–730 (2014a)ADSCrossRefGoogle Scholar
  39. Ţălu, Ş., Stach, S., Mahajan, A., Pathak, D., Wagner, T., Kumar, A., Bedi, R.K.: Multifractal analysis of drop-casted copper(II) tetrasulfophthalocyanine film surfaces on the indium tin oxide substrates. Surf. Interface Anal. 46(6), 393–398 (2014b)CrossRefGoogle Scholar
  40. Ţălu, Ş., Stach, S., Solaymani, S., Moradian, R., Ghaderi, A., Hantehzadeh, M.R., Elahi, S.M., Garczyk, Ż., Izadyar, S.: Multifractal spectra of atomic force microscope images of Cu/Fe nanoparticles based films thickness. j. Electroanal. Chem. 749, 31–41 (2015a)CrossRefGoogle Scholar
  41. Ţălu, Ş., Stach, S., Ghodselahi, T., Ghaderi, A., Solaymani, S., Boochani, A., Garczyk, Ż.: Topographic characterization of Cu–Ni NPs@a-C:H films by AFM and multifractal analysis. J. Phys. Chem. B 119(17), 5662–5670 (2015b)CrossRefGoogle Scholar
  42. Toupin, M., Brousse, T., Belanger, D.: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)CrossRefGoogle Scholar
  43. Ul Islam, A.K.M.F., Islam, R., Khan, K.A.: Effects of deposition variables on spray-deposited MnO2 thin films prepared from Mn(C2H3O2)2 4H2O. Renew. Energ. 30, 2289–2302 (2005a)CrossRefGoogle Scholar
  44. Ul Islam, A.K.M.F., Islam, R., Khan, K.A.: Studies on the thermoelectric effect in semiconducting MnO2 thin films. J. Mater. Sci. Mater. Electron. 16(4), 203–207 (2005b)CrossRefGoogle Scholar
  45. Ulutas, K., Deger, D., Skarlatos, Y.: Thickness dependence of optical properties of amorphous indium oxide thin films deposited by reactive evaporation. Phys. Stat. Sol. 20310, 2432–2437 (2006)ADSCrossRefGoogle Scholar
  46. Wu, C.C., Yang, C.F.: Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate. ACS Appl. Mater. Interfaces 5(11), 4996–5001 (2013)CrossRefGoogle Scholar
  47. Xia, W., Wang, D., Lou, X.: Shape-controlled synthesis of MnO2 nanostructures with enhanced electro catalytic activity for oxygen reduction. J. Phys. Chem. 114, 1694–1700 (2009)Google Scholar
  48. Xing, X.J., Yu, Y.P., Xu, L.M., Wu, S.X., Li, S.W.: Magnetic properties of β-MnO2 thin films grown by plasma-assisted molecular beam epitaxy. J. Phys. Chem. C 112(39), 15526–15531 (2008)CrossRefGoogle Scholar
  49. Yadav, R.P., Dwivedi, S., Mittal, A.K., Kumar, M., Pandey, A.C.: Fractal and multifractal analysis of LiF thin film surface. Appl. Surf. Sci. 261, 547–553 (2012)ADSCrossRefGoogle Scholar
  50. Yousefi, T., Nozadgolikand, A., Mashhadizadeh, M.H., Aghazadehc, M.: Facile synthesis of α-MnO2 one-dimensional (1D) nanostructure and energy storage ability studies. J. Solid State Chem. 190, 202–207 (2012)ADSCrossRefGoogle Scholar
  51. Zhang, L., Kang, L., Lv, H., Su, Z.: Selectively enhanced molecular emission spectra of benzene, toluene and xylene with nano-MnO2 in atmospheric ambient temperature dielectric barrier discharge. J. Mater. Res. 23(3), 780–789 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bandar Astinchap
    • 1
    • 2
    Email author
  • Rostam Moradian
    • 3
    • 4
  • Tahereh Namdari
    • 3
    • 4
  • Stanislav Jurečka
    • 5
  • Ştefan Ţălu
    • 6
  1. 1.Physics Department, Faculty of ScienceUniversity of KurdistanSanandajIran
  2. 2.Research Center for NanotechnologyUniversity of KurdistanSanandajIran
  3. 3.Physics Department, Faculty of ScienceRazi UniversityKermanshahIran
  4. 4.Nano Technology Research LaboratoryRazi UniversityKermanshahIran
  5. 5.Faculty of Electrical Engineering, Institute of Aurel StodolaUniversity of ŽilinaLiptovský MikulášSlovakia
  6. 6.The Directorate of Research, Development and Innovation Management (DMCDI)Technical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations