Advertisement

A chiral long-period grating fabrication method based on axis-offset rotating optical fiber

  • Xudong Kong
  • Liyong RenEmail author
  • Jian Liang
  • Kaili Ren
  • Haijuan Ju
  • Yiping Xu
  • Chengfang Xu
Article
  • 25 Downloads

Abstract

We propose a method to fabricate chiral long-period grating (CLPG) by rotating the standard single mode fiber which is fixed on two fiber holders but with an axis-offset. We show that, compared with traditional fabrication methods, this axis-offset method is capable of obtaining identical resonance wavelengths of the CLPGs for the same grating period. We investigate the performance of CLPGs by detecting the interference between the light emerging from CLPGs and a reference light. The achieved forklike and spiral interference patterns both confirm the generation of ± 1-order optical vortex through CLPG. Experimental results indicate that high-quality CLPGs can be easily and repeatedly fabricated by this method.

Keywords

Fiber optics Fiber design and fabrication Fiber optics and optical communications 

Notes

Acknowledgement

The authors acknowledge funding from the National Science Foundation of China (Nos. 61535015, 61275149, 61605018, 61505246).

References

  1. Alexeyev, C.N., Lapin, B.P., Yavorsky, M.A.: The effect of spin–orbit coupling on the structure of the stopband in helical-core optical fibres. J. Opt. A Pure Appl. Opt. 10, 85006–85013 (2008)CrossRefGoogle Scholar
  2. Chao, W.W.: Magnetic field sensor based on nickel-coated S-shaped long period fiber grating. Opt. Quantum Electron. 50, 357–368 (2018)CrossRefGoogle Scholar
  3. Churikov, V.M., Kopp, V.I., Genack, A.Z.: Dual-twist fiber long period gratings. Proc. SPIE Int. Soc. Opt. Eng. 7212, 72120H-1–72120H-9 (2009)ADSGoogle Scholar
  4. Fu, C., Liu, S., Bai, Z., He, J., Liao, C., Wang, Y., Li, Z., Zhang, Y., Yang, K., Yu, B., Wang, Y.: Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen-oxygen flame. J. Lightwave Technol. 36, 1683–1688 (2018)ADSCrossRefGoogle Scholar
  5. Inoue, G., Wang, P., Li, H.: Flat-top band-rejection filter based on two successively-cascaded helical fiber gratings. Opt. Express 24, 5442–5447 (2016)ADSCrossRefGoogle Scholar
  6. Ivanov, O.V.: Fabrication of long-period fiber gratings by twisting a standard single-mode fiber. Opt. Lett. 30, 3290–3292 (2005)ADSCrossRefGoogle Scholar
  7. Ivanovic, M.D., Petrovic, J.: A long-period fibre grating monitor of respiratory volumes for the use in non-invasive mechanical ventilation. Opt. Quantum Electron. 48, 346–356 (2016)CrossRefGoogle Scholar
  8. Kong, X., Ren, K., Ren, L., Liang, J., Ju, H.: Chiral long-period gratings: fabrication, highly sensitive torsion sensing, and tunable single-band filtering. Appl. Opt. 56, 4702–4707 (2017)ADSCrossRefGoogle Scholar
  9. Kopp, V.I., Genack, A.Z.: Chiral fibres: adding twist. Nat Photonics 5, 470–472 (2011)ADSCrossRefGoogle Scholar
  10. Kopp, V.I., Churikov, V.M., Singer, J., Chao, N., Neugroschl, D., Genack, A.Z.: Chiral fiber gratings. Science 305, 74–75 (2004)ADSCrossRefGoogle Scholar
  11. Kopp, V.I., Park, J., Wlodawski, M., Singer, J., Neugroschl, D., Genack, A.Z.: Chiral fibers: microformed optical waveguides for polarization control, sensing, coupling, amplification, and switching. J. Lightwave Technol. 32, 605–613 (2014)ADSCrossRefGoogle Scholar
  12. Oh, S., Lee, K.R., Paek, U.C., Chung, Y.: Fabrication of helical long-period fiber gratings by use of a CO2 laser. Opt. Lett. 29, 1464–1466 (2004)ADSCrossRefGoogle Scholar
  13. Ren, K., Ren, L., Liang, J., Kong, X., Ju, H., Wu, Z.: Online and efficient fabrication of helical long-period fiber gratings. IEEE Photonics Technol. Lett. 29, 1175–1178 (2017)Google Scholar
  14. Wong, G.K.L., Kang, M.S., Lee, H.W., Biancalana, F., Conti, C., Weiss, T., Russell, P.S.J.: Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber. Science 337, 446–449 (2012)ADSCrossRefGoogle Scholar
  15. Xi, X., Wong, G.K.L., Frosz, M.H., Babic, F., Ahmed, G., Jiang, X., Euser, T.G., Russell, P.S.J.: Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber. Optica 1, 165–169 (2014)CrossRefGoogle Scholar
  16. Xu, H., Yang, L.: Conversion of orbital angular momentum of light in chiral fiber gratings. Opt. Lett. 38, 1978–1980 (2013)ADSCrossRefGoogle Scholar
  17. Yang, L., Xue, L., Li, C., Su, J., Qian, J.: Adiabatic circular polarizer based on chiral fiber grating. Opt. Express 19, 2251–2256 (2011)ADSCrossRefGoogle Scholar
  18. Zhang, W., Huang, L., Wei, K., Li, P., Jiang, B., Mao, D., Gao, F., Mei, T., Zhang, G., Zhao, J.: High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion. Opt. Lett. 41, 5082–5085 (2016)ADSCrossRefGoogle Scholar
  19. Zhao, Y., Liu, Y., Zhang, C., Zhang, L., Zheng, G., Mou, C., Wen, J., Wang, T.: All-fiber mode converter based on long-period fiber gratings written in few-mode fiber. Opt. Lett. 42, 4708–4711 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xudong Kong
    • 1
    • 3
  • Liyong Ren
    • 1
    • 2
    Email author
  • Jian Liang
    • 1
  • Kaili Ren
    • 4
  • Haijuan Ju
    • 1
    • 3
  • Yiping Xu
    • 5
  • Chengfang Xu
    • 1
    • 3
  1. 1.State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision MechanicsChinese Academy of SciencesXi’anChina
  2. 2.School of Physics and Information TechnologyShaanXi Normal UniversityXi’anChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.School of Electronic EngineeringXi’an University of Posts and TelecommunicationsXi’anChina
  5. 5.Department of Optoelectronic Engineering, School of Physics and Optoelectronic EngineeringYangtze UniversityJingzhouChina

Personalised recommendations