Indium tin oxide and silver based fiber optic SPR sensor: an experimental study

  • Vicky Kapoor
  • Navneet K. SharmaEmail author
  • Vivek Sajal


Fabrication and characterization of SPR based fiber optic sensor utilizing bi-layers of ITO-Ag is presented. Effects of thicknesses of ITO and Ag layers on the sensitivity of sensor are studied experimentally. Sensitivity ascends as the thickness of Ag layer is enhanced till 30 nm and it starts decreasing as the thickness of Ag layers is further increased beyond 30 nm. SPR sensor based on 40 nm thick ITO layer-30 nm thick Ag layer demonstrates highest sensitivity.


SPR Optical fiber Sensor ITO Ag 



This work is financially supported by Defence Research and Development Organization (DRDO), India through Project Number ERIP/ER/DG-ECS/990116205/M/01/1687. Navneet K. Sharma is also thankful to Satyendra K. Mishra for the motivation and support.


  1. Brewer, S.H., Franzen, S.: Calculation of the electronic and optical properties of indium tin oxide by density functional theory. Chem. Phys. 300, 285–293 (2004)CrossRefGoogle Scholar
  2. Franzen, S.: Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J. Phys. Chem. C 112, 6027–6032 (2008)CrossRefGoogle Scholar
  3. Franzen, S., Rhodes, C., Cerruti, M., Gerber, R.W., Losego, M., Maria, J.P., Aspnes, D.E.: Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Opt. Lett. 34, 2867–2869 (2009)ADSCrossRefGoogle Scholar
  4. Gupta, B.D., Verma, R.K.: Surface plasmon resonance based fiber optic sensors: principle, probe designs and some applications. J. Sens. 2009, 979761 (2009)CrossRefGoogle Scholar
  5. Harris, R.D., Wilkinson, J.S.: Waveguide surface plasmon resonance sensors. Sens. Actuator B 29, 261–267 (1995)CrossRefGoogle Scholar
  6. Homola, J.: Optical fiber sensor based on surface plasmon excitation. Sens. Actuator B 29, 401–405 (1995)CrossRefGoogle Scholar
  7. Homola, J.: On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sens. Actuator B 41, 207–211 (1997)CrossRefGoogle Scholar
  8. Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sens. Actuator B 54, 3–15 (1999)CrossRefGoogle Scholar
  9. Jorgenson, R.C., Yee, S.S.: A fiber optic chemical sensor based on surface plasmon resonance. Sens. Actuator B 12, 213–220 (1993)CrossRefGoogle Scholar
  10. Kretschmann, E.: Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmashwingungen. Zeits. Physik 241, 313–324 (1971)ADSCrossRefGoogle Scholar
  11. Kretschmann, E., Reather, H.: Radiative decay of non-radiative surface plasmons excited by light. Zeits. Naturforschung 23, 2135–2136 (1968)ADSGoogle Scholar
  12. Liedberg, B., Nylander, C., Sundstrom, I.: Surface plasmon resonance for gas detection and biosensing. Sens. Actuator B 4, 299–304 (1983)CrossRefGoogle Scholar
  13. Lin, W.B., Jaffrezic-Renault, N., Gagnaire, A., Gagnaire, H.: The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor. Sens. Actuator A 84, 198–204 (2000)CrossRefGoogle Scholar
  14. Mishra, A.K., Mishra, S.K.: Infrared SPR sensitivity enhancement using ITO/TiO2/silicon overlays. Europhys. Lett. 112, 10001 (2015)ADSCrossRefGoogle Scholar
  15. Rhodes, C., Franzen, S., Maria, J.P., Losego, M., Leonard, D.N., Laughlin, B., Duscher, G., Weibel, S.: Surface plasmon resonance in conducting metal oxides. J. Appl. Phys. 100, 054905 (2006)ADSCrossRefGoogle Scholar
  16. Rhodes, C., Cerruti, M., Efremenko, A., Losego, M., Aspnes, D.E., Maria, J.P., Franzen, S.: Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. J. Appl. Phys. 103, 093108 (2008)ADSCrossRefGoogle Scholar
  17. Shah, K., Sharma, N.K., Sajal, V.: Analysis of fiber optic SPR sensor utilizing platinum based nanocomposites. Opt. Quant. Electron. 50, 265 (2018)CrossRefGoogle Scholar
  18. Sharma, A.K., Gupta, B.D.: Absorption based fiber optic surface plasmon resonance sensor: a theoretical evaluation. Sens. Actuator B 100, 423–431 (2004)CrossRefGoogle Scholar
  19. Sharma, A.K., Gupta, B.D.: On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers. Opt. Commun. 245, 159–169 (2005)ADSCrossRefGoogle Scholar
  20. Sharma, A.K., Gupta, B.D.: On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys. 101, 093111 (2007)ADSCrossRefGoogle Scholar
  21. Sharma, N.K., Rani, M., Sajal, V.: Surface plasmon resonance based fiber optic sensor with double resonance dips. Sens. Actuator B 188, 326–333 (2013)CrossRefGoogle Scholar
  22. Shukla, S., Sharma, N.K., Sajal, V.: Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study. Sens. Actuator B 206, 463–470 (2015)CrossRefGoogle Scholar
  23. Srivastava, S.K., Gupta, B.D.: Influence of ions on the surface plasmon resonance spectrum of a fiber optic refractive index sensor. Sens. Actuator B 156, 559–562 (2011)CrossRefGoogle Scholar
  24. Srivastava, S.K., Arora, V., Sapra, S., Gupta, B.D.: Localized surface plasmon resonance based fiber optic U-shaped biosensor for the detection of blood glucose. Plasmonics 7, 261–268 (2012)CrossRefGoogle Scholar
  25. Verma, R.K., Gupta, B.D.: Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film. JOSA A 27, 846–851 (2010)ADSCrossRefGoogle Scholar
  26. Villar, I.D., Zamarreno, C.R., Hernaez, M., Arregui, F.J., Matias, I.R.: Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications. J. Lightw. Technol. 28, 111–117 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and Materials Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations