Advertisement

Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation

  • Izaddeen K. YakasaiEmail author
  • Pg Emeroylariffion Abas
  • Sharafat Ali
  • Feroza Begum
Article
  • 42 Downloads

Abstract

A porous core photonic crystal fibre based on conventional hexagonal lattice cladding is proposed for propagating terahertz radiation. The structure is designed and theoretically investigated using full vectorial finite element method. Simulation results show that at 300 µm core diameter, with a high porosity of 85%, and an operating frequency of 1.3 THz, the proposed fibre reduces the bulk absorption loss of cyclic olefin copolymer (TOPAS) by about 81%, which corresponds to an ultra-low effective material loss value of 0.039 cm−1. Furthermore, the proposed fibre shows near zero dispersion coefficient of 0.47 ps/THz/cm with an extremely small variation of 0.05 over a broad 1.3 THz bandwidth; with confinement and bending losses investigated and found to be negligibly low. It is anticipated that the proposed waveguide can potentially be used for short range transmission of terahertz radiation in the communication window.

Keywords

Terahertz Porous core photonic crystal fibre Effective material loss Dispersion 

Notes

References

  1. Aljunid, S.A., Islam, R., Ahmed, N., Ali, S., Rana, S.: Ultra-high birefringent and dispersion-flattened low loss single-mode terahertz wave guiding. IET Commun. 10, 1579–1583 (2016).  https://doi.org/10.1049/iet-com.2015.0629 CrossRefGoogle Scholar
  2. Atakaramians, S., Afshar, S., Fischer, B.M., Abbott, D., Monro, T.M.: Porous fibers: a novel approach to low loss THz waveguides. Opt. Express 16, 8845–8854 (2008)ADSCrossRefGoogle Scholar
  3. Atakaramians, S., Afshar, S., Monro, T.M., Abbott, D.: Terahertz dielectric waveguides. Adv. Opt. Photonics. 5, 169–215 (2013)ADSCrossRefGoogle Scholar
  4. Birks, T.A., Knight, J.C., Russell, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)ADSCrossRefGoogle Scholar
  5. Cunningham, P.D., Valdes, N.N., Vallejo, F.A., Hayden, L.M., Polishak, B., Zhou, X.H., Luo, J., Jen, A.K.Y., Williams, J.C., Twieg, R.J.: Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. J. Appl. Phys. 109, 043505 (2011).  https://doi.org/10.1063/1.3549120 ADSCrossRefGoogle Scholar
  6. Gallot, G., Jamison, S.P., McGowan, R.W., Grischkowsky, D.: Terahertz waveguides. J. Opt. Soc. Am. B. 17, 851–863 (2000).  https://doi.org/10.1364/JOSAB.17.000851 ADSCrossRefGoogle Scholar
  7. Ghann, W., Uddin, J.: Terahertz (THz) spectroscopy: a cutting-edge technology. In: Uddin, J. (ed.) Terahertz Spectroscopy-A Cutting Edge Technology. InTech, Vienna (2017)CrossRefGoogle Scholar
  8. Goto, M., Quema, A., Takahashi, H., Ono, S., Sarukura, N.: Teflon photonic crystal fiber as terahertz waveguide. Jpn. J. Appl. Phys. Pt. 2 Lett. 43, L317–L319 (2004).  https://doi.org/10.1143/jjap.43.l317 CrossRefGoogle Scholar
  9. Grischkowsky, D.: Waveguides for terahertz endoscopy. In: Son, J.H. (ed.) Terahertz Biomedical Science and Technology. CRC Press, Cambridge (2014)Google Scholar
  10. Habib, M.A., Anower, M.S.: Design and numerical analysis of highly birefringent single mode fiber in THz regime. Opt. Fiber Technol. 47, 197–203 (2019).  https://doi.org/10.1016/j.yofte.2018.11.006 ADSCrossRefGoogle Scholar
  11. Han, H., Park, H., Cho, M., Kim, J.: Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 80, 2634–2636 (2002)ADSCrossRefGoogle Scholar
  12. Hidaka, T., Morohashi, I., Komori, K., Nakagawa, H., Ito, H.: THz wave hollow waveguide with ferroelectric PVDF polymer as the cladding material. In: Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe (Cat. No.00TH8505), Nice, 1 pp (2000).  https://doi.org/10.1109/CLEOE.2000.910024
  13. Islam, M.S., Sultana, J., Atai, J., Abbott, D., Rana, S., Islam, M.R.: Ultra low-loss hybrid core porous fiber for broadband applications. Appl. Opt. 56, 1232–1237 (2017a)ADSCrossRefGoogle Scholar
  14. Islam, M.S., Sultana, J., Atai, J., Islam, M.R., Abbott, D.: Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation. Opt. J. Light Electron Opt. 145, 398–406 (2017b)CrossRefGoogle Scholar
  15. Islam, M., Sultana, J., Rifat, A.A., Dinovitser, A., Ng, B.W.H., Abbott, D.: Terahertz sensing in a hollow core photonic crystal fiber. IEEE Sens. J. 18, 4073–4080 (2018a).  https://doi.org/10.1109/jsen.2018.2819165 ADSCrossRefGoogle Scholar
  16. Islam, M.S., Sultana, J., Ahmed, K., Islam, M.R., Dinovitser, A., Ng, B.W.H., Abbott, D.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18, 575–582 (2018b).  https://doi.org/10.1109/jsen.2017.2775642 ADSCrossRefGoogle Scholar
  17. Islam, M.S., Sultana, J., Dinovitser, A., Faisal, M., Islam, M.R., Ng, B.W.-H., Abbott, D.: Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications. Appl. Opt. 57, 666–672 (2018c).  https://doi.org/10.1364/AO.57.000666 ADSCrossRefGoogle Scholar
  18. Islam, M.S., Sultana, J., Dorraki, M., Atai, J., Islam, M.R., Dinovitser, A., Ng, B.W.H., Abbott, D.: Low loss and low dispersion hybrid core photonic crystal fiber for terahertz propagation. Photonic Netw. Commun. 35, 364–373 (2018d).  https://doi.org/10.1007/s11107-017-0751-7 CrossRefGoogle Scholar
  19. Islam, M.S., Sultana, J., Faisal, M., Islam, M.R., Dinovitser, A., Ng, B.W.-H., Abbott, D.: A modified hexagonal photonic crystal fiber for terahertz applications. Opt. Mater. (Amst) 79, 336–339 (2018e).  https://doi.org/10.1016/J.OPTMAT.2018.03.054 ADSCrossRefGoogle Scholar
  20. Islam, M.S., Sultana, J., Rifat, A.A., Ahmed, R., Dinovitser, A., Ng, B.W.-H., Ebendorff-Heidepriem, H., Abbott, D.: Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt. Express 26, 30347–30361 (2018f).  https://doi.org/10.1364/OE.26.030347 ADSCrossRefGoogle Scholar
  21. Islam, M.S., Sultana, J., Ahmmed Aoni, R., Habib, M.S., Dinovitser, A., Ng, B.W.-H., Abbott, D.: Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification. Opt. Lett. 44, 1134–1137 (2019).  https://doi.org/10.1364/ol.44.001134 ADSCrossRefGoogle Scholar
  22. Jeon, T.I., Grischkowsky, D.: Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines. Appl. Phys. Lett. 85, 6092–6094 (2004).  https://doi.org/10.1063/1.1839645 ADSCrossRefGoogle Scholar
  23. Johnson, I.P., Yuan, W., Stefani, A., Nielsen, K., Rasmussen, H.K., Khan, L., Webb, D.J., Kalli, K., Bang, O.: Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer. Electron. Lett. 47, 271–272 (2011).  https://doi.org/10.1049/el.2010.7347 CrossRefGoogle Scholar
  24. Kaijage, S.F., Ouyang, Z., Jin, X.: Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photonics Technol. Lett. 25, 1454–1457 (2013)ADSCrossRefGoogle Scholar
  25. Nagatsuma, T., Horiguchi, S., Minamikata, Y., Yoshimizu, Y., Hisatake, S., Kuwano, S., Yoshimoto, N., Terada, J., Takahashi, H.: Terahertz wireless communications based on photonics technologies. Opt. Express 21, 23736–23747 (2013).  https://doi.org/10.1364/OE.21.023736 ADSCrossRefGoogle Scholar
  26. Pawar, A.Y., Sonawane, D.D., Erande, K.B., Derle, D.V.: Terahertz technology and its applications. Drug Invent. Today 5, 157–163 (2013).  https://doi.org/10.1016/j.dit.2013.03.009 CrossRefGoogle Scholar
  27. Siegel, P.H.: Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438–2447 (2004).  https://doi.org/10.1109/TMTT.2004.835916 ADSCrossRefGoogle Scholar
  28. Sultana, J., Islam, M.S., Atai, J., Islam, M.R., Abbott, D.: Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission. Opt. Eng. 56, 076114–076118 (2017).  https://doi.org/10.1117/1.OE.56.7.076114 ADSCrossRefGoogle Scholar
  29. Sultana, J., Islam, M.S., Faisal, M., Islam, M.R., Ng, B.W.H., Ebendorff-Heidepriem, H., Abbott, D.: Highly birefringent elliptical core photonic crystal fiber for terahertz application. Opt. Commun. 407, 92–96 (2018).  https://doi.org/10.1016/j.optcom.2017.09.020 ADSCrossRefGoogle Scholar
  30. Tian, L., Ni, H.: The vibrational dynamics of n-alkanes in the terahertz region. Sci. Sin. Phys. Mech. Astron. 45, 084205 (2015).  https://doi.org/10.1360/SSPMA2015-00138 CrossRefGoogle Scholar
  31. Uthman, M., Rahman, B.M.A., Kejalakshmy, N., Agrawal, A., Grattan, K.T.V.: Design and characterization of low-loss porous-core photonic crystal fiber. IEEE Photonics J. 4, 2315–2325 (2012).  https://doi.org/10.1109/JPHOT.2012.2231939 ADSCrossRefGoogle Scholar
  32. Vincetti, L.: Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications. Opt. Fiber Technol. 15, 398–401 (2009).  https://doi.org/10.1016/j.yofte.2009.05.002 ADSCrossRefGoogle Scholar
  33. Wächter, M., Nagel, M., Kurz, H.: Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission. Appl. Phys. Lett. 90, 061111 (2007).  https://doi.org/10.1063/1.2472544 ADSCrossRefGoogle Scholar
  34. Yuan, W., Khan, L., Webb, D.J., Kalli, K., Rasmussen, H.K., Stefani, A., Bang, O.: Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt. Express 19, 19731–19739 (2011).  https://doi.org/10.1364/OE.19.019731 ADSCrossRefGoogle Scholar
  35. Ziemann, O., Krauser, J., Zamzow, P.E., Daum, W.: POF Handbook. Springer, Berlin (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Integrated TechnologiesUniversiti Brunei DarussalamGadongBrunei Darussalam
  2. 2.Department of Mechanical & Electrical Engineering, School of Food & Advanced TechnologyMassey UniversityAucklandNew Zealand

Personalised recommendations