Advertisement

Influence of confined phonon for the different models in GaAs quantum wells on the optically detected electrophonon resonance linewidth

  • Khoa Doan Quoc
  • Hien Nguyen DinhEmail author
Article
  • 27 Downloads

Abstract

In this work, we use method of the operator projection to study in detail the influence of phonon confinement, which depicted in the Huang-Zhu models, Ridley’s guided, and Fuchs–Kliewer slab on the optically detected electrophonon resonance (ODEPR) effect and ODEPR linewidth in square quantum wells. In addition, the ODEPR linewidths the same as functions of the width of well and temperature are also achieved. By numerical calculations for quantum well of the GaAs, we can see that the linewidth reduces with respect to the width of the well and raises with temperature for the cases of bulk and confined phonons. Moreover, we cannot ignore the important role of the influence of phonon confinement in the narrow area of the width of well (\(L_{z} < 10\) nm), when considering the ODEPR linewidths.

Keywords

ODEPR effect Confined phonon GaAs quantum well Linewidth 

Notes

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.03-2017.28.

References

  1. Bennett, C.R., Guven, K., Tanatar, B.: Confined-phonon effects in the band-gap renormalization of semiconductor quantum wires. Phys. Rev. B 57, 3994–3999 (1998)ADSCrossRefGoogle Scholar
  2. Bhat, J.S., Kubakaddi, S.S., Mulimani, B.G.: Free carrier absorption in semiconducting quantum wells for confined LO phonon scattering. J. Appl. Phys. 72, 4966–4968 (1992)ADSCrossRefGoogle Scholar
  3. Bhat, J.S., Mulimani, B.G., Kubakaddi, S.S.: Localized phonon-assisted cyclotron resonance in GaAs/AlAs quantum wells. Phys. Rev. B 49, 16459–16466 (1994)ADSCrossRefGoogle Scholar
  4. Bhat, J.S., Kapatkar, S.B., Kubakaddi, S.S., Mulimani, B.G.: Energy loss rate of hot electrons due to confined and interface optical phonons in semiconductor quantum wells in quantizing magnetic field. Phys. Status Solidi B 209, 37–47 (1998)ADSCrossRefGoogle Scholar
  5. Cho, Y.J., Choi, S.D.: Calculation of quantum-limit cyclotron-resonance linewidths in Ge and Si by the isolation-projection technique. Phys. Rev. B 49, 14301–14306 (1994a)ADSCrossRefGoogle Scholar
  6. Cho, Y.J., Choi, S.D.: Calculation of quantum-limit cyclotron-resonance linewidths in Ge and Si by the isolation-projection technique. Phys. Rev. B 49, 14301–14306 (1994b)ADSCrossRefGoogle Scholar
  7. Dinh, L., Phuc, H.V.: Nonlinear phonon-assisted cyclotron resonance via two-photon process in asymmetrical Gaussian potential quantum wells. Superlattices Microstruct. 86, 111–120 (2015)ADSCrossRefGoogle Scholar
  8. Huang, K., Zhu, B.: Dielectric continuum model and Fröhlich interaction in superlattices. Phys. Rev. B 38, 13377–13386 (1988)ADSCrossRefGoogle Scholar
  9. Kang, N.L., Bae, K.S., Choi, C.H., Lee, Y.J., Sug, J.Y., Kim, J.H., Choi, S.D.: Magnetic field dependence of cyclotron resonance linewidths in Ge and Si by a projection technique. J. Phys.: Condens. Matter 7, 8629–8635 (1995)ADSGoogle Scholar
  10. Kobori, H., Ohyama, T., Otsuka, E.: Line-width of quantum limit cyclotron resonance. I. Phonon scatterings in Ge, Si, CdS and InSb. J. Phys. Soc. Jpn. 59, 2141–2163 (1990)ADSCrossRefGoogle Scholar
  11. Lee, S.C., Kang, J.W., Ahn, H.S., Yang, M., Kang, N.L., Kim, S.W.: Optically detected electrophonon resonance effects in quantum wells. Physica E 28, 402–411 (2005)ADSCrossRefGoogle Scholar
  12. Licari, J.J., Evrard, R.: Electron-phonon interaction in a dielectric slab: effect of the electronic polarizability. Phys. Rev. B 15, 2254–2264 (1977)ADSCrossRefGoogle Scholar
  13. Masale, M., Constantinou, N.C.: Electron–LO-phonon scattering rates in a cylindrical quantum wire with an axial magnetic field: analytic results. Phys. Rev. B 48, 11128–11134 (1993)ADSCrossRefGoogle Scholar
  14. Matthiesen, C., Vamivakas, A.N., Atature, M.: Subnatural Linewidth Single Photons from a Quantum Dot. Phys. Rev. Lett. 108, 093602-1–093602-4 (2012)ADSCrossRefGoogle Scholar
  15. Nishiguchi, N.: Resonant acoustic-phonon modes in a quantum wire. Phys. Rev. B 52, 5279–5288 (1995)ADSCrossRefGoogle Scholar
  16. Phong, T.C., Phuc, H.V.: Nonlinear absorption line-widths in rectangular quantum wires. Mod. Phys. Lett. B 25, 1003–1011 (2011)ADSCrossRefGoogle Scholar
  17. Phong, T.C., Phuong, L.T.T., Phuc, H.V.: Cyclotron-resonance line-width due to electron-LO-phonon interaction in cylindrical quantum wires. Superlattices Microstruct. 52, 16–23 (2012)ADSCrossRefGoogle Scholar
  18. Phong, T.C., Phuong, L.T.T., Phuc, H.V., Vinh, P.T.: Influence of phonon confinement on the optically detected electrophonon resonance line-width in rectangular quantum wires. J. Korean Phys. Soc. 62, 305–310 (2013)ADSCrossRefGoogle Scholar
  19. Phong, T.C., Phuong, L.T.T., Hien, N.D., Lam, V.T.: Influence of phonon confinement on the optically detected magneto-phonon resonance line-width in quantum wells. Physica E 71, 79–83 (2015)ADSCrossRefGoogle Scholar
  20. Phuc, H.V., Hien, N.D., Dinh, L., Phong, T.C.: Confined optical-phonon-assisted cyclotron resonance in quantum wells via two-photon absorption process. Superlattices Microstruct. 94, 51–59 (2016)ADSCrossRefGoogle Scholar
  21. Phuong, L.T.T., Phuc, H.V., Phong, T.C.: Influence of phonon confinement on the optically-detected electrophonon resonance line-width in cylindrical quantum wires. Physica E 56, 102–106 (2014)ADSCrossRefGoogle Scholar
  22. Ridley, B.K.: Electron scattering by confined LO polar phonons in a quantum well. Phys. Rev. B 39, 5282–5286 (1989)ADSCrossRefGoogle Scholar
  23. Rudin, S., Reinecke, T.L.: Electron–LO-phonon scattering rates in semiconductor quantum wells. Phys. Rev. B 41, 7713–7717 (1990)ADSCrossRefGoogle Scholar
  24. Spector, H.N., Lee, J., Melman, P.: Exciton linewidth in semiconducting quantum-well structures. Phys. Rev. B 34, 2554–2560 (1986)ADSCrossRefGoogle Scholar
  25. Sug, J.Y., Jo, S.G., Kim, J., Lee, J.H., Choi, S.D.: Quantum transition processes in deformation potential interacting systems using the equilibrium density projection technique. Phys. Rev. B 64, 235210–1–235210-9 (2001)CrossRefGoogle Scholar
  26. Svizhenko, A., Balandin, A., Bandyopadhyay, S., Stroscio, M.A.: Electron interaction with confined acoustic phonons in quantum wires subjected to a magnetic field. Phys. Rev. B 57, 4687–4693 (1998)ADSCrossRefGoogle Scholar
  27. Wei, B.H., Kim, C.S.: Self-energy of a confined polaron in a quantum well: comparison among different phonon models. Phys. Rev. B 58, 9623–9627 (1998)ADSCrossRefGoogle Scholar
  28. Weman, H., Sirigu, L., Karlsson, K.F., Leifer, K., Rudra, A., Kapon, E.: High internal quantum efficiency, narrow linewidth InGaAs/GaAs/AlGaAs quantum wire light-emitting diodes. Appl. Phys. Lett. 81, 2839–2841 (2002)ADSCrossRefGoogle Scholar
  29. Yu, S.G., Pevzner, V.B., Kim, K.W., Stroscio, M.A.: Electrophonon resonance in cylindrical quantum wires. Phys. Rev. B 58, 3580–3583 (1998)ADSCrossRefGoogle Scholar
  30. Zheng, R., Matsuura, M.: Well-width dependence of electron-phonon interaction energies in quantum wells due to confined LO phonon modes. Phys. Rev. B 61, 12624–12627 (2000a)ADSCrossRefGoogle Scholar
  31. Zheng, R., Matsuura, M.: Well-width dependence of electron-phonon interaction energies in quantum wells due to confined LO phonon modes. Phys. Rev. B 61, 12624–12627 (2000b)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Quang Tri Teacher Training CollegeDong HaVietnam
  2. 2.Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations