Advertisement

Assessment of InSb infrared detector arrays assembly procedure employing ANSYS

  • Xiaoling Zhang
  • Qingduan MengEmail author
  • Yanqiu Lü
  • Junjie Si
Article
  • 8 Downloads

Abstract

Local failure in the InSb infrared detector arrays (InSb IDAs) is chiefly triggered by the local shear stress, the peeling stress, and the tensile stress in the InSb IDAs. Thus, these three stress components are utilized to assess the rationality of the current assembly procedure of the InSb IDAs in this paper, which is described as follows: firstly, performing liquid nitrogen shocking tests on the fabricated InSb IDAs, provided that no local failure phenomena occur in the InSb IDAs, then the balanced composite structure (BCS) is glued with the bottom surface of the InSb IDAs to accomplish the fabrication of the InSb IDAs assembly. We ascertain that the tensile stress in the center region of the InSb substrate declines slightly with the attached BCS, at the same time, both the interfacial shear stress and the peeling stress maintain unchanged at the locations where the local delamination most likely appears. These non-increased stress distribution characteristics with the added BCS confirmed that the current assembly procedure of the InSb IDAs is reasonable, and the glued BCS does not increase the failure probability of the InSb IDAs assembly.

Keywords

Infrared detector arrays Local failure Balanced composite structure 

Notes

Acknowledgements

The research was supported by the National Natural Science Foundation of China (61505048) and by the Key Scientific Research Projects of Higher Education Institutions in Henan Province (19A510012).

References

  1. Asatourian, R.K., Morris, W.L., Cooper, D.E., James, M.R.: Hybrid focal plane array comprising stabilizing structure. EU patent 19960114824 (1996)Google Scholar
  2. Barton, J.: Thermal mismatch accommodated infrared detector hybrid array. US patent 5308980 (1994)Google Scholar
  3. Gay, E., Gibert, P., Bonamy, P.J.: Edge effects and fatigue delamination of composite laminates and bonded assemblies. Rev. Compos. Mater. Av. 26, 9–24 (2016)Google Scholar
  4. Ge, Y.Y., Gong, X.J., De Luycker, E., Hurez, A.: Characterization of pure mode I, II and III delamination of laminated composite by using edge ring crack specimen. Proc. Eur. Conf. Compos. Mater. 1, 92–1–6 (2016)Google Scholar
  5. Hsueh, C.H., Lee, S., Lin, H.Y.: Analyses of mode I edge delamination by thermal stresses in multilayer systems. Compos. Part B: Eng. 37, 1–9 (2006a)CrossRefGoogle Scholar
  6. Hsueh, C.H., Luttrell, C.R., Lee, S., Wu, T.C., Lin, H.Y.: Interfacial peeling moments and shear forces at free edges of multilayers subjected to thermal stresses. J. Am. Chem. Soc. 89, 1632–1638 (2006b)Google Scholar
  7. Hu, W.D., Chen, X.S., Ye, Z.H., Meng, C., Lv, Y.Q., Lu, W.: Effects of absorption layer characteristic on spectral photo response of mid-wavelength InSb photodiodes. Opt. Quant. Electron. 42, 801–808 (2011)CrossRefGoogle Scholar
  8. Hu, W.D., Chen, X.S., Ye, Z.H., Chen, Y.G., Yin, F., Zhang, B., Lu, W.: Polarity inversion and coupling of laser beam induced current in As-doped long-wavelength HgCdTe infrared detector pixel arrays: experiment and simulation. Appl. Phys. Lett. 101, 181108–1–5 (2012)Google Scholar
  9. Hu, W.D., Ye, Z.H., Liao, L., Chen, H.L., Chen, L., Ding, R.J., He, L., Chen, X.S., Lu, W.: 128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Opt. Lett. 39, 5130–5133 (2014)CrossRefGoogle Scholar
  10. Jamison, R.D., Shen, Y.L.: Delamination analysis of metal–ceramic multilayer coatings subject to nanoindentation. Surf. Coat. Technol. 303, 3–11 (2016)CrossRefGoogle Scholar
  11. Kanno, T., Wada, H., Nagashima, M., Wakayama, H., et al.: A 256 × 256 element HgCdTe hybrid IRFPA for 8–10 μm band. SPIE 2552, 384–391 (1995)ADSGoogle Scholar
  12. Li, Q., He, J.L., Hu, W.D., Chen, L., Chen, X.S., Lu, W.: Influencing sources for dark current transport and avalanche mechanisms in planar and mesa HgCdTe pin electron-avalanche photodiodes. IEEE Trans. Electron. Dev. 65, 572–576 (2018)ADSCrossRefGoogle Scholar
  13. Lu, Y.J., Zhang, K., Wang, F.H., Lou, K., Zhao, X.: Enhanced and weakened strength in brittle film-substrate structure. Mater. Des. 108, 455–461 (2016)CrossRefGoogle Scholar
  14. Meng, Q.D., Zhang, X.L., Zhang, L.W., Lü, Y.Q.: Structural modeling of 128 × 128 InSb focal plane array detector. Acta Phys. Sin. 61, 190701–1–6 (2012)Google Scholar
  15. Meng, Q.D., Zhang, X.L., Lü, Y.Q., Si, J.J.: Local delamination of InSb IDAs in liquid nitrogen shock tests. Infrared Phys. Technol. 86, 207–211 (2017a)ADSCrossRefGoogle Scholar
  16. Meng, Q.D., Zhang, X.L., Lü, Y.Q., Si, J.J.: Calculation and verification of thermal stress in InSb focal plane arrays detector. Opt. Quant. Electron. 49, 402–1–11 (2017b)Google Scholar
  17. Rogalski, A., Martyniuk, P., Kopytko, M.: Challenges of small-pixel infrared detectors: a review. Rep. Prog. Phys. 79, 04650–1–43 (2016)CrossRefGoogle Scholar
  18. Zhang, X.L., Meng, Q.D., Zhang, L.W., Lü, Y.Q.: Modeling and deformation analyzing of InSb focal plane arrays detector under thermal shock. Infrared Phys. Technol. 63, 28–34 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Information EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.Aviation Key Laboratory of Science and Technology on Infrared DetectorChina Airborne Missile AcademyLuoyangChina

Personalised recommendations