Efficient coupling of dynamic electro-optical and heat-transport models for high-power broad-area semiconductor lasers

  • Mindaugas RadziunasEmail author
  • Jürgen Fuhrmann
  • Anissa Zeghuzi
  • Hans-Jürgen Wünsche
  • Thomas Koprucki
  • Carsten Brée
  • Hans Wenzel
  • Uwe Bandelow
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2018


In this work, we discuss the modeling of edge-emitting high-power broad-area semiconductor lasers. We demonstrate an efficient iterative coupling of a slow heat transport (HT) model defined on multiple vertical–lateral laser cross-sections with a fast dynamic electro-optical (EO) model determined on the longitudinal–lateral domain that is a projection of the device to the active region of the laser. Whereas the HT-solver calculates temperature and thermally-induced refractive index changes, the EO-solver exploits these distributions and provides time-averaged field intensities, quasi-Fermi potentials, and carrier densities. All these time-averaged distributions are used repetitively by the HT-solver for the generation of the heat sources entering the HT problem solved in the next iteration step.


Broad area lasers Modeling Traveling wave Current spreading Heat transport Iterative coupling Different time scales Finite volumes Efficient implementation 



This work is supported by the German Federal Ministry of Education and Research contract 13N14005 as part of the EffiLAS/HotLas project and by the EUROSTARS Project E!10524 HIP-Lasers.


  1. BALaser: a software tool for simulation of dynamics in Broad Area semiconductor Lasers. Accessed 20 Feb 2019
  2. Blaaberg, S., Petersen, P.M., Tromborg, B.: Structure, stability, and spectra of lateral modes of a broad-area semiconductor laser. IEEE J. Quantum Electron. 43, 959–973 (2007)ADSCrossRefGoogle Scholar
  3. Borruel, L., Sujecki, S., Moreno, P.M.D., Wykes, J., Krakowski, M., Sumpf, B., Sewell, P.A., Auzanneau, S.C., Wenzel, H., Rodriguez, D., Benson, T.M., Larkins, E.C., Esquivias, I.: Quasi-3-D simulation of high-brightness tapered lasers. IEEE J. Quantum Electron. 40(3), 463–472 (2004)ADSCrossRefGoogle Scholar
  4. Champagne, Y., Mailhot, S., McCarthy, N.: Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with external cavity. IEEE J. Quantum Electron. 31, 795–810 (1995)ADSCrossRefGoogle Scholar
  5. Crump, P., Erbert, G., Wenzel, H., Frevert, C., Schultz, C.M., Hasler, K.-H., Staske, R., Sumpf, B., Maaßdorf, A., Brugge, F., Knigge, S., Tränkle, G.: Efficient high-power laser diodes. IEEE J. Sel. Top. Quantum Electron. 19(4), 1501211 (2013). ADSCrossRefGoogle Scholar
  6. Davis, T.A.: UMFPACK V4.3. ACM TOMS 30(2), 196–199 (2004)MathSciNetCrossRefGoogle Scholar
  7. Diehl, R.: High-Power Diode Lasers: Fundamentals, Technology, Applications. Springer, Berlin (2000)CrossRefGoogle Scholar
  8. Fuhrmann, J., Streckenbach, T., et al.: pdelib: a finite volume and finite element toolbox for PDEs. Accessed 20 Feb 2019
  9. Radziunas, M.: Modeling and simulations of broad-area edge-emitting semiconductor devices. Int. J. High Perform. Comput. Appl. 32(4), 512–522 (2018)CrossRefGoogle Scholar
  10. Radziunas, M., Čiegis, R.: Effective numerical algorithm for simulations of beam stabilization in broad area semiconductor lasers and amplifiers. Math. Model. Anal. 19, 627–644 (2014)MathSciNetCrossRefGoogle Scholar
  11. Radziunas, M., Zeghuzi, A., Fuhrmann, J., Koprucki, T., Wünsche, H.-J., Wenzel, H., Bandelow, U.: Efficient coupling of the inhomogeneous current spreading model to the dynamic electro-optical solver for broad-area edge-emitting semiconductor devices. Opt. Quantum Electron. 49, 332 (2017). CrossRefGoogle Scholar
  12. Rauch, S., Wenzel, H., Radziunas, M., Haas, M., Tränkle, G., Zimer, H.: Impact of longitudinal refractive index change on the near-field width of high-power broad-area diode lasers. Appl. Phys. Lett. 110(26), 263504 (2017). ADSCrossRefGoogle Scholar
  13. Spreemann, M., Lichtner, M., Radziunas, M., Bandelow, U., Wenzel, H.: Measurement and simulation of distributed-feedback tapered master-oscillators power-amplifiers. IEEE J. Quantum Electron. 45, 609–616 (2009)ADSCrossRefGoogle Scholar
  14. Tachikawa, T., Takimoto, S., Shogenji, R., Ohtsubo, J.: Dynamics of broad-area semiconductor lasers with short optical feedback. IEEE J. Quantum Electron. 46, 140–149 (2010)ADSCrossRefGoogle Scholar
  15. Wenzel, H.: Basic aspects of high-power semiconductor laser simulation. IEEE J. Sel. Top. Quantum Electron. 19, 1–13 (2013)CrossRefGoogle Scholar
  16. Zeghuzi, A., Radziunas, M., Wenzel, H., Wünsche, H.-J., Bandelow, U., Knigge, A.: Modeling of current spreading in high-power broad-area lasers and its impact on the lateral far field divergence. SPIE Proc. Ser. 10526, 105261H (2018a). CrossRefGoogle Scholar
  17. Zeghuzi, A., Radziunas, M., Klehr, A., Wünsche, H.-J., Wenzel, H., Knigge, A.: Influence of nonlinear effects on the characteristics of pulsed high-power broad-area distributed Bragg reflector lasers. Opt. Quantum Electron. 50, 88 (2018b). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Weierstrass InstituteBerlinGermany
  2. 2.Ferdinand-Braun-Institut, Leibniz Institut für HöchstfrequenztechnikBerlinGermany

Personalised recommendations