Advertisement

On the reliability of pulse power saturation models for broad-area GaAs-based lasers

  • Joachim PiprekEmail author
Article
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2018

Abstract

With short current pulses, GaAs-based lasers can achieve high output powers if self-heating and catastrophic optical damage are suppressed. However, the pulse power is still severely limited by internal saturation mechanisms. Over the past decade, various power loss mechanisms have been identified by numerical laser simulation but published conclusions differ even for the same laser diode. We here investigate the reliability of such simulations and find that the error range remains relatively small if all saturation mechanisms are considered simultaneously in a self-consistent model, including a realistic hole mobility. Accurate pulse power predictions are demonstrated by simulating measurements on two different laser structures without making material parameter adjustments.

Keywords

Laser diode Pulse operation Output power saturation Numerical simulation 

Notes

References

  1. Avrutin, E.A., Ryvkin, B.S.: Theory of direct and indirect effect of two-photon absorption on nonlinear optical losses in high power semiconductor lasers. Semicond. Sci. Technol. 32, 015004 (2017)ADSCrossRefGoogle Scholar
  2. Dogan, M., Michael, C.P., Zheng, Y., Zhu, L., Jacob, J.H.: Two photon absorption in high power broad area laser diodes. SPIE Proc. 8965, 89650P (2014)ADSCrossRefGoogle Scholar
  3. Knigge, A., Klehr, A., Wenzel, H., Zeghuzi, A., Fricke, J., Maaßdorf, A., Liero, A., Tränkle, G.: Wavelength-stabilized high-pulse-power laser diodes for automotive LiDAR. Phys. Status Solidi A 215, 1700439 (2018)ADSCrossRefGoogle Scholar
  4. Piprek, J., White, K., SpringThorpe, A.: What limits the maximum output power of long-wavelength AlGaInAs lasers? IEEE J. Quantum Electron. 38, 1253–1259 (2002)ADSCrossRefGoogle Scholar
  5. Piprek, J.: Semiconductor Optoelectronic Devices—Introduction to Physics and Simulation. Academic Press, San Diego (2003)Google Scholar
  6. Piprek, J., Li, Z.M.: What causes the pulse power saturation of GaAs-based broad-area lasers? Photon. Technol. Lett. 30, 963–966 (2018)ADSCrossRefGoogle Scholar
  7. Piprek, J., Li, Z.M.: Evaluating two-photon absorption effects on pulsed high-power laser operation. In: 2018 NUSOD Conference Proceedings, IEEE, pp. 89–90 (2018b)Google Scholar
  8. Ryvkin, B., Avrutin, E.: Non-uniform carrier accumulation in optical confinement layer as ultimate power limitation in ultra-high-power broad-waveguide pulsed InGaAs/GaAs/AlGaAs laser diodes. Electron. Lett. 42, 1283–1284 (2006)CrossRefGoogle Scholar
  9. Said, A.A., Sheik-Bahae, M., Hagan, D.J., Wei, T.H., Wang, J., Young, J., Van Stryland, E.W.: Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. J. Opt. Soc. Am. B 9, 405–414 (1992)ADSCrossRefGoogle Scholar
  10. Tarasov, I.S., Pikhtin, N.A., Slipchenko, S.O., Sokolova, Z.N., Vinokurov, D.A., Borschev, K.S., Kapitonov, V.A., Khomylev, M.A., Leshko, AYu., Lyutetskiy, A.V., Stankevich, A.L.: High power CW (16 W) and pulse (145 W) laser diodes based on quantum well heterostructures. Spectrochim. Acta Part A 66, 819–823 (2007)ADSCrossRefGoogle Scholar
  11. Tarasov, I.S.: High-power semiconductor separate-confinement double heterostructure lasers. Quantum Electron. 40, 661–681 (2010)ADSCrossRefGoogle Scholar
  12. Veselov, D.A., Kapitonov, V.A., Pikhtin, N.A., Lyutetskiy, A.V., Nikolaev, D.N., Slipchenko, S.O., Sokolova, Z.N., Shamakhov, V.V., Shashkin, I.S., Tarasov, I.S.: Saturation of light–current characteristics of high-power lasers (λ = 1.0–1.1 μm) in pulsed regime. Quantum Electron. 44, 993–996 (2014)ADSCrossRefGoogle Scholar
  13. Wang, X., Crump, P., Wenzel, H., Liero, A., Hoffmann, T., Pietrzak, A., Schultz, C.M., Klehr, A., Ginolas, A., Einfeldt, S., Bugge, F., Erbert, G., Tränkle, G.: Root-cause analysis of peak power saturation in pulse-pumped 1100 nm broad area single emitter diode lasers. J. Quantum Electron. 46, 658–665 (2010)ADSCrossRefGoogle Scholar
  14. Wenzel, H., Crump, P., Pietrzak, A., Roder, C., Wang, X., Erbert, G.: The analysis of factors limiting the maximum output power of broad-area laser diodes. Opt. Quantum Electron. 41, 645–652 (2010a)CrossRefGoogle Scholar
  15. Wenzel, H., Crump, P., Pietrzak, A., Wang, X., Erbert, G., Tränkle, G.: Theoretical and experimental investigations of the limits to the maximum output power of laser diodes. New J. Phys. 12, 085007 (2010b)ADSCrossRefGoogle Scholar
  16. Wenzel, H., Zeghuzi, A.: High-power lasers, Ch. 27. In: Piprek, J. (ed.) Handbook of optoelectronic device modeling and simulation. CRC Press, Boca Raton (2017)Google Scholar
  17. Zeghuzi, A., Radziunas, M., Wünsche, H.-J., Klehr, A., Wenzel, H., Knigge, A.: Influence of nonlinear effects on the characteristics of pulsed high-power broad-area distributed Bragg reflector lasers. Opt. Quantum Electron. 50, 88 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NUSOD Institute LLCNewarkUSA

Personalised recommendations