Advertisement

Effect of Yagi–Uda nano-antenna element shape on the directivity and radiation efficiency

  • Fatma E. Helmy
  • Mohamed Hussein
  • Mohamed Farhat. O. Hameed
  • Ahmed Shaker
  • M. El-Adawy
  • S. S. A. ObayyaEmail author
Article
  • 63 Downloads
Part of the following topical collections:
  1. 2018 - Optical Wave and Waveguide Theory and Numerical Modelling

Abstract

In this paper, different optimal designs of Yagi–Uda nano-antennas (NAs) are introduced and analyzed based on different element shapes to maximize the directivity and radiation efficiency. The studied element shapes include triangular, hexagonal, cube, square, rotated square, rectangular, ellipsoid, and elliptical cylinder shapes. The NAs parameters for each design are optimized using particle swarm optimization algorithm to achieve high directivity at a wavelength of 500 nm for wireless point-to-point applications. The designs are numerically analysed using 3-D finite difference time domain method (3-D FDTD) via Lumerical software package. To illustrate the performance of the proposed antennas, different radiation parameters such as radiation pattern, directivity, and radiation efficiency have been studied. Moreover, a tolerance of ± 5% is calculated to consider the imperfections that may appear in the fabrication process at a nanoscale. The optimized rectangular prism NA achieves the highest directivity of 24.21 with an efficiency of 50.74%. However, the optimized triangular prism NA has the highest efficiency of 73% with a directivity of 20.89. This enhancement is mainly attributed to the efficient coupling between array elements along with low side lobe level. However, a trade-off between directivity and radiation efficiency is obtained by the hexagonal prism NA with directivity of 21.9 and radiation efficiency of 69.1%.

Keywords

Nano-antennas Yagi–Uda Directivity Radiation efficiency Particle swarm optimization (PSO) 

Notes

Compliance with ethical standards

Conflict of interest

Authors would like to clarify that there no potential conflicts of interest (financial or non-financial).

Ethical approval

The authors would like to ensure the objectivity and transparency in the submitted research paper. Additionally, the authors would like to ensure that accepted principles of ethical and professional conduct have been followed through the preparation of the proposed paper.

Human and animal rights

Moreover, the submitter research does not involve human participants, or animals.

References

  1. Alu, A., Engheta, N.: Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys. Rev. Lett. 104, 1–4 (2010)Google Scholar
  2. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)ADSCrossRefGoogle Scholar
  3. Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley Press, Hoboken (2005)Google Scholar
  4. Bharadwaj, P., Bradley, D., Lukas, N.: Optical antennas. Adv. Opt. Photonics 1(3), 438–483 (2009)CrossRefGoogle Scholar
  5. Chao, B.-K., Lin, S.-C., Nien, L.-W., Li, J.-H., Hsueh, C.-H.: Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy. J. Opt. 17(12), 1–10 (2015)Google Scholar
  6. Cubukcu, E., Capasso, F.: Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons. Appl. Phys. Lett. 95, 1–3 (2009)Google Scholar
  7. Dasgupta, A., Mennemanteuil, M.M., Buret, M., Cazier, N., Colas-des-Francs, G., Bouhelier, A.: Optical wireless link between a nanoscale antenna and a transducing rectenna. Nat. Commun. 9(1), 1–7 (2018)CrossRefGoogle Scholar
  8. Eltokhey, M.W., Mahmoud, K.R., Obayya, S.S.A.: Optimised diffusion spots’ locations for simultaneous improvement in SNR and delay spread. Photon Netw. Commun. 31(1), 172–182 (2016)CrossRefGoogle Scholar
  9. Ghanim, A.M., Hussein, M., Hameed, M.F.O., Yahia, A., Obayya, S.S.A.: Highly directive hybrid Yagi–Uda nanoantenna for radiation emission enhancement. IEEE Photonics J. 8, 1–12 (2016)CrossRefGoogle Scholar
  10. Ghanim, A.M., Hussein, M., Hameed, M.F.O., Obayya, S.S.A.: Design considerations of super-directive nanoantennas for core–shell nanowires. JOSA B 35(1), 182–188 (2018)ADSCrossRefGoogle Scholar
  11. Hameed, M.F.O., Mahmoud, K.R., Obayya, S.S.A.: Metaheuristic algorithms for dispersion optimization of photonic crystal fibers. Opt. Quantum Electron. 48(2), 1–11 (2016)CrossRefGoogle Scholar
  12. Hatab, N.A., Hsueh, C.H., Gaddis, A.L., Retterer, S.T., Li, J.H., Eres, G., Zhang, Z., Gu, B.: Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 10(12), 4952–4955 (2010)ADSCrossRefGoogle Scholar
  13. Helmy, F.E., Hussein, M., Hameed, M.F.O., Shaker, A., El-Adawy, M., Obayya, S. A.: Optimal design of Yagi–Uda nanoantennas based on elliptical shaped elements. In: Nanophotonics VII (10672), 106722G. International Society for Optics and Photonics (2018)Google Scholar
  14. Klemm, M.: Directional plasmonic nanoantennas for wireless links at the nanoscale. In: Antennas and Propagation Conference (LAPC), 2011 Loughborough, pp. 1–4. IEEE (2011)Google Scholar
  15. Klemm, M.: Novel directional nanoantennas for single-emitter sources and wireless nano-links. Int. J. Opt. 2012, 1–7 (2012)Google Scholar
  16. Knight, M.W., Sobhani, H., Nordlander, P., Halas, N.J.: Photodetection with active optical antennas. Science 332, 702–704 (2011)ADSCrossRefGoogle Scholar
  17. Krasnok, A.E., Miroshnichenko, A.E., Belov, P.A., Kivshar, Y.S.: All-dielectric optical nanoantenna. Opt. Exp. 20(18), 20599–20604 (2012)ADSCrossRefGoogle Scholar
  18. Krasnok, A., Sergey M., Mikhail P., Roman S., Pavel B., Yuri, K.: Towards all-dielectric metamaterials and nanophotonics. In: Metamaterials X, vol. 9502, p. 950203. International Society for Optics and Photonics (2015)Google Scholar
  19. Li, J., Salandrino, A., Engheta, N.: Shaping light beams in the nanometer scale: a Yagi–Uda nanoantenna in the optical domain. Phys. Rev. B 76, 1–7 (2007)Google Scholar
  20. Li, J., Alessandro, S., Nader, E.: Optical spectrometer at the nanoscale using optical Yagi–Uda nanoantennas. Phys. Rev. B 79(19), 1–5 (2009)Google Scholar
  21. Liu, Y.G., Choy, W.C.H., Sha, W.E.I., Chew, W.C.: Unidirectional and wavelength-selective photonic sphere-array nanoantennas. Opt. Lett. 37, 2112–2114 (2012)ADSCrossRefGoogle Scholar
  22. Liu, H., Erouel, M., Gerelli, E., Harouri, A., Benyattou, T., Orobtchouk, R., Milord, L., Belarouci, A., Letartre, X., Jamois, C.: Nanoantenna-induced fringe splitting of Fabry–Perot interferometer: a model study of plasmonic/photonic coupling. Opt. Express 23, 31085–31097 (2015)ADSCrossRefGoogle Scholar
  23. Ma, L., Lin, J., Ma, Y., Liu, B., Tan, J., Jin, P.: Yagi–Uda optical antenna array collimated laser based on surface plasmons. Opt. Commun. 368, 197–201 (2016)ADSCrossRefGoogle Scholar
  24. Mahmoud, K.R., El-Adawy, M., Ibrahem, S.M.M., Bansal, R., Mahmoud, K.R., Zainud-Deen, S.H.: MPSO-MOM: a hybrid modified particle swarm optimization and method of moment algorithm for smart antenna synthesis. Electromagnetics 28(6), 411–426 (2008)CrossRefGoogle Scholar
  25. Mahmoud, K.R., Hussein, M., Hameed, M.F.O., Yahia, A., Obayya, S.S.A.: Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission. J. Opt. Soc. Am. B 34(10), 2041–2049 (2017)ADSCrossRefGoogle Scholar
  26. Meng, Z., Cao, H., Zhou, D., Chen, Z., Zhu, C., Chen, S., Tan, X., Zhang, Y.: Ultradirectional optical nanoantennas with high radiation efficiency by core–shell nanoparticles. J. Nanophotonics 11, 1–12 (2017)Google Scholar
  27. Ou, Y.-C., Joseph, A.W., Shannon, F., Daniel, S., Eric, M.T., Sharon, L., Camden, C.C., John, T.W., Leon, M.B., Rizia, B.: Gold nanoantenna-mediated photothermal drug delivery from thermosensitive liposomes in breast cancer. ACS Omega 1(2), 234–243 (2016)CrossRefGoogle Scholar
  28. Pavlov, R.S., Alberto, G.C., Niek, F.V.H.: Log-periodic optical antennas with broadband directivity. Opt. Commun. 285(16), 3334–3340 (2012)ADSCrossRefGoogle Scholar
  29. Reena, Y.K., Kumar, A., Sinha, R.K.: Tunable unidirectional scattering of ellipsoidal single nanoparticle. J. Appl. Phys. 119, 1–6 (2016)Google Scholar
  30. Robinson, J., Yahya, R.-S.: Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52(2), 397–407 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. Satitchantrakul, T., Silapunt, R.: Analysis and design of the dielectric Yagi–Uda nanoantenna with a double driven element. In: Progress in Electromagnetics Research Symposium (PIERS), pp. 2306–2310 (2014)Google Scholar
  32. Taminiau, T.H., Stefani, F.D., Hulst, N.F.V.: Enhanced directional excitation and emission of single emitters by a nano-optical Yagi–Uda antenna. Opt. Express 16, 10858–10866 (2008)ADSCrossRefGoogle Scholar
  33. Thammawongsa, N., Mitatha, S., Yupapin, P.P.: An optical nano-antenna system design for radio therapeutic use. Artif. Cells Nanomed. Biotechnol. 41(1), 21–26 (2013)CrossRefGoogle Scholar
  34. Vandenbosch, G.A., Zhongkun, M.: Upper bounds for the solar energy harvesting efficiency of nano-antennas. Nano Energy 1(3), 494–502 (2012)CrossRefGoogle Scholar
  35. Yagi, H., Uda, S.: Projector of the sharpest beam of electric waves. Proc. Imp. Acad. 2(2), 49–52 (1926)CrossRefGoogle Scholar
  36. Yang, Y., Li, Q., Qiu, M.: Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas. Sci. Rep. 6, 1–8 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fatma E. Helmy
    • 1
    • 2
  • Mohamed Hussein
    • 2
    • 3
  • Mohamed Farhat. O. Hameed
    • 2
    • 4
    • 5
  • Ahmed Shaker
    • 1
  • M. El-Adawy
    • 1
  • S. S. A. Obayya
    • 2
    Email author
  1. 1.Electronics, Communications, and Computers Department, Faculty of EngineeringHelwan UniversityCairoEgypt
  2. 2.Center for Photonics and Smart MaterialsZewail City of Science and TechnologyGizaEgypt
  3. 3.Physical Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  4. 4.Nanotechnology Engineering Program, University of Science and TechnologyZewail City of Science and TechnologyGizaEgypt
  5. 5.Mathematic and Engineering Physics Department, Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations