Advertisement

Analytical study of resonant optical solitons with variable coefficients in Kerr and non-Kerr law media

  • Nauman RazaEmail author
  • Muhammad Rizwan Aslam
  • Hadi Rezazadeh
Article

Abstract

In this article, the extended trial approach has been used for the investigation of traveling wave solutions of resonant nonlinear Schrödinger equation with variable coefficients depending upon time in the presence of different effects such as Kerr law and parabolic law nonlinearity including a Bohm potential term. Many new soliton solutions such as bright, dark, singular and rational function solutions are obtained. This technique proves to be an advantageous and powerful mathematical tool for establishing abundant exact traveling wave solutions in mathematical physics and plasma. The resonant nonlinear Schrodinger’s equation, in specific, governs the propagation of soliton in both quantum potential and uniaxial waves in a cold collisionless plasma.

Keywords

Optical solitons Extended trial equation method Resonant nonlinear Schrodinger equations Constraints 

Notes

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitous Non-linear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  2. Arnous, A.H., Mirzazadeh, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by modified simple equation method. Optik 127, 11450–11459 (2016)ADSCrossRefGoogle Scholar
  3. Dehghan, M., Manafian, J.: The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method. J. Phys. Sci. 64, 7–8 (2014)CrossRefGoogle Scholar
  4. Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Ullah, M.Z., Zhou, Q., Triki, H., Moshokoa, S.P., Biswas, A.: Optical solitons with anti-cubic nonlinearity by extended trial equation method. Optik 136, 368–373 (2017)ADSCrossRefGoogle Scholar
  5. Ekici, M., Sonmezoglu, A., Zhou, Q., Biswas, A., Ullah, M.Z., Asma, M., Moshokoa, S.P., Belic, M.: Optical solitons in DWDM system by extended trial equation method. Optik 141, 157–167 (2017)ADSCrossRefGoogle Scholar
  6. El-Sabbagh, M.F., El-Ganaini, S.I.: The First integral method and its applications to nonlinear equations. Appl. Math. Sci. 6, 3893–3906 (2012)MathSciNetzbMATHGoogle Scholar
  7. Eslami, M., Mirzazadeh, M., Biswas, A.: Soliton solutions of the resonant nonlinear Schrödinger’s equation in optical fibers with time-dependent coefficients by simplest equation approach. J. Mod. Opt. 60, 1627–1636 (2013)ADSCrossRefGoogle Scholar
  8. Eslami, M., Mirzazadeh, M., Vajargah, B.F., Biswas, A.: Optical solitons for the resonant nonlinear Schrödinger’s equation with time-dependent coefficients by the first integral method. Optik 125, 3107–3116 (2014)ADSCrossRefGoogle Scholar
  9. Fan, E.: Extended Tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)ADSMathSciNetCrossRefGoogle Scholar
  10. Foroutan, M., Zamanpour, I., Manafian, J.: Applications of IBSOM and ETEM for solving the nonlinear chains of atoms with long-range interactions. Eur. Phys. J. Plus 132, 132–421 (2017)CrossRefGoogle Scholar
  11. Gepreel, K.A.: Explicit Jacobi elliptic exact solutions for nonlinear partial fractional differential equations. Adv. Differ. Equ. 2014, 286–300 (2014)MathSciNetCrossRefGoogle Scholar
  12. Gepreel, K.A.: Extended trial equation method for nonlinear coupled Schrodinger Boussinesq partial differential equations. J. Egypt. Math. Soc. 24, 381–391 (2016)MathSciNetCrossRefGoogle Scholar
  13. Guree, Y., Sonmezoglu, A., Misirli, E.: Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics. Pramana J. Phys. 77, 1023–1029 (2011)ADSCrossRefGoogle Scholar
  14. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)ADSMathSciNetCrossRefGoogle Scholar
  15. Hirota, R., Satsuma, J.: Soliton solutions of a coupled Korteweg–de vries equation. Phys. Lett. A 85, 407–408 (1981)ADSMathSciNetCrossRefGoogle Scholar
  16. Hosseini, K., Bekir, A., Kaplan, M.: New exact traveling wave solutions of the Tzitzeíca-type evolutions arising in non-linear optics. J. Mod. Opt. 64, 1688–1692 (2017a)ADSCrossRefGoogle Scholar
  17. Hosseini, K., Ayati, Z., Ansari, R.: New exact traveling wave solutions of the Tzitzéica type equations using a novel exponential rational function method. Optik 148, 85–89 (2017b)ADSCrossRefGoogle Scholar
  18. Javid, A., Raza, N.: Singular and dark optical solitons to the well posed Lakshamanan–Porsezian–Daniel model. Optik 171, 120–129 (2018)ADSCrossRefGoogle Scholar
  19. Kilic, B., Inc, M.: On optical solitons of the resonant Schrödinger’s equation in optical fibers with dual-power law nonlinearity and time-dependent coefficientsD. Waves Random Complex Media 25, 334–341 (2015)ADSMathSciNetCrossRefGoogle Scholar
  20. Ma, W.X., Lee, J.H.: A transformed rational function method and exact solutions to the (3 + 1) dimensional Jimbo–Miwa equation. Chaos Solitons Fractals 42, 1356–1363 (2009)ADSMathSciNetCrossRefGoogle Scholar
  21. Manafian, J.: On the complex structures of the Biswas–Milovic equation for power, parabolic and dual parabolic law nonlinearities. Eur. Phys. J. Plus 130, 1–20 (2015)CrossRefGoogle Scholar
  22. Manafian, J., Aghdaei, F.M., Khalilian, M., Jeddi, R.S.: Application of the generalized G’/G-expansion method for nonlinear PDEs to obtaining soliton wave solution. Optik 135, 395–406 (2017)ADSCrossRefGoogle Scholar
  23. Mirzazadeh, M., Arnous, A.H., Mahmood, F.M., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81, 277–282 (2015)CrossRefGoogle Scholar
  24. Raza, N., Javid, A.: Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrdinger’s equation. Waves Random Complex Media (2018a).  https://doi.org/10.1080/17455030.2018.1451009 CrossRefGoogle Scholar
  25. Raza, N., Javid, A.: Optical dark and singular solitons to the Biswas–Milovic equation in nonlinear optics with spatio-temporal dispersion. Optik 158, 1049–1057 (2018b)ADSCrossRefGoogle Scholar
  26. Raza, N., Zubair, A.: Bright, dark and dark-singular soliton solutions of nonlinear Schrodinger’s equation with spatio-temporal dispersion. J. Mod. Opt. 65, 1975–1982 (2018)ADSMathSciNetCrossRefGoogle Scholar
  27. Seyedi, S.H., Saray, B.N., Nobari, M.R.H.: Using interpolation scaling functions based on Galerkin method for solving non-Newtonian fluid flow between two vertical flat plates. Appl. Math. Comput. 269, 488–496 (2015)MathSciNetGoogle Scholar
  28. Triki, H., Hayat, T., Aldossary, O.M., Biswas, A.: Bright and dark solitons for the resonant nonlinear Schrödinger’s equation with time-dependent coefficients. Opt. Laser Technol. 44, 2223–2231 (2012)ADSCrossRefGoogle Scholar
  29. Wang, M.L.: Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A 199, 169–172 (1995)ADSMathSciNetCrossRefGoogle Scholar
  30. Wang, M., Zhou, Y., Li, Z.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)ADSCrossRefGoogle Scholar
  31. Yan, C.T.: A simple transformation for nonlinear waves. Phys. Lett. A 224, 77–84 (1996)ADSMathSciNetCrossRefGoogle Scholar
  32. Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M., Eslami, M.: Optical solitons with Biswas–Milovic equation by extended trial equation method. Nonlinear Dyn. 84, 1883–1900 (2016)MathSciNetCrossRefGoogle Scholar
  33. Zubair, A., Raza, N., Mirzazadeh, M., Liu, W., Zhou, Q.: Analytic study on optical solitons in parity-time-symmetric mixed linear and nonlinear modulation lattices with non-Kerr nonlinearities. Optik 173, 249–262 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nauman Raza
    • 1
    Email author
  • Muhammad Rizwan Aslam
    • 1
  • Hadi Rezazadeh
    • 2
  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan
  2. 2.Faculty of Engineering TechnologyAmol University of Special Modern TechnologiesAmolIran

Personalised recommendations