Advertisement

Two-photon absorption in quantum dot semiconductor optical amplifiers-based all-optical XOR gate at 2 Tb/s

  • Amer KotbEmail author
  • Chunlei Guo
Article

Abstract

The nonlinear effect of two-photon absorption (TPA) on the performance of all-optical XOR gate using quantum dot semiconductor optical amplifiers (QDSOAs)-assisted Mach–Zehnder interferometer is numerically analyzed and investigated at a data rate of 2 Tb/s. The dependence of the quality factor (QF) on the critical parameters of the input signal and QDSOA is examined and assessed. The obtained QFs for the all-optical XOR gate using QDSOAs-MZI at 2 Tb/s with TPA and without TPA are 14 and 8, respectively.

Keywords

All-optical XOR gate Two-photon absorption Quantum dot semiconductor optical amplifier Mach–Zehnder interferometer 

Notes

Acknowledgements

This work was funded by Chinese Academy of Sciences President’s International Fellowship Initiative (PIFI) (Grant No. 2019FYT0002) and Talented Young Scientist Program (TYSP) supported by China Science and Technology Exchange Center of Ministry of Science and Technology of China.

References

  1. Berg, T., Bischoff, S., Magnusdottir, I., Mork, J.: Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices. IEEE Photon. Technol. Letts. 13, 541–543 (2001)ADSCrossRefGoogle Scholar
  2. Dimitriadou, E., Zoiros, K.E.: On the design of reconfigurable ultrafast all-optical NOR and NAND gates using a single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. J. Opt. 14(105401), 1–9 (2012a)Google Scholar
  3. Dimitriadou, E., Zoiros, K.E.: On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Laser Technol. 44, 600–607 (2012b)ADSCrossRefGoogle Scholar
  4. Dimitriadou, E., Zoiros, K.E.: Proposal for all-optical NOR gate using single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Commun. 285, 1710–1716 (2012c)ADSCrossRefGoogle Scholar
  5. Dimitriadou, E., Zoiros, K.E.: On the feasibility of ultrafast all-optical NAND gate using single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Laser Technol. 44, 1971–1981 (2012d)ADSCrossRefGoogle Scholar
  6. Dimitriadou, E., Zoiros, K.E.: All-optical XOR gate using single quantum-dot SOA and optical filter. Lightwave Technol. 31, 3813–3821 (2013a)ADSCrossRefGoogle Scholar
  7. Dimitriadou, E., Zoiros, K.E.: On the feasibility of 320 Gb/s all-optical AND gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Prog. Electromagn. Res. B (PIERS) 50, 113–140 (2013b)CrossRefGoogle Scholar
  8. Dimitriadou, E., Zoiros, K.E.: Proposal for ultrafast all-optical XNOR gate using single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Laser Technol. 45, 79–88 (2013c)ADSCrossRefGoogle Scholar
  9. Dong, H., Wang, Q., Zhu, G., Jaques, J., Piccirilli, A.B., Dutta, N.K.: Demonstration of all-optical OR gate using semiconductor optical amplifier-delayed interferometer. Opt. Commun. 242, 479–485 (2004)ADSCrossRefGoogle Scholar
  10. Dong, H., Sun, H., Wang, Q., Dutta, N.K., Jaques, J.: 80 Gb/s all-optical logic AND operation using Mach–Zehnder interferometer with differential scheme. Opt. Commun. 265, 79–83 (2006a)ADSCrossRefGoogle Scholar
  11. Dong, H., Sun, H., Wang, Q., Dutta, N.K., Jaques, J.: All-optical logic AND operation at 80 Gb/s using Semiconductor optical amplifier based Mach–Zehnder interferometer. Microw. Opt. Technol. Lett. 48, 1672–1675 (2006b)CrossRefGoogle Scholar
  12. Dutta, N.K., Wang, Q.: Semiconductor Optical Amplifiers, 2nd edn. World Scientific Publishing Company, Singapore (2013)CrossRefGoogle Scholar
  13. Houbavlis, T., Zoiros, K.E., Kanellos, G., Tsekrekos, C.: Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Commun. 232, 179–199 (2004)ADSCrossRefGoogle Scholar
  14. Kang, I., Rasras, M., Buhl, L., Dinu, M., Cabot, S., Cappuzzo, M., Gomez, L.T., Chen, Y.F., Patel, S.S., Dutta, N., Piccirilli, A., Jaques, J., Giles, C.R.: All-optical XOR and XNOR operations at 86.4 Gb/s using a pair of semiconductor optical amplifier Mach-Zehnder interferometers. Opt. Express 17, 19062–19066 (2009)ADSCrossRefGoogle Scholar
  15. Kim, S.H., Kim, J.H., Choi, J., Woo, D.H.: All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electron. Lett. 2, 957–959 (2005)Google Scholar
  16. Kim, J.Y., Kang, J.M., Kim, T.Y., Han, S.K.: All-optical multiple logic gates with XOR, NOR, OR and NAND functions using parallel SOA-MZI structures: theory and experiment. Lightwave Technol. 24, 3392–3399 (2006)ADSCrossRefGoogle Scholar
  17. Kotb, A.: AND based on two-photon absorption in semiconductor optical amplifier. Optoelectron. Letts. 9, 181–184 (2013a)ADSCrossRefGoogle Scholar
  18. Kotb, A.: NAND gate with quantum-dot semiconductor optical amplifiers-based Mach–Zehnder interferometer. Optoelectron. Letts. 9, 89–92 (2013b)ADSCrossRefGoogle Scholar
  19. Kotb, A.: NOR gate based on QD-SOA at 250 Gbit/s. Opt. Quantum Electron. 45, 473–480 (2013c)CrossRefGoogle Scholar
  20. Kotb, A.: 1 Tb/s high-quality factor NOR gate based on quantum-dot semiconductor optical amplifier. Op. Quantum Electron. 45, 1258–1268 (2013d)Google Scholar
  21. Kotb, A.: Performance of all-optical XNOR gate based on two-photon absorption in semiconductor optical amplifiers. Adv. Opt. Technol. 2014, 754713 (2015a)Google Scholar
  22. Kotb, A.: Simulation of all-optical logic NOR gate based on two-photon absorption with semiconductor optical amplifier-assisted Mach–Zehnder interferometer with the effect of amplified spontaneous emission. Korean Phys. Soc. 66, 1593–1598 (2015b)ADSCrossRefGoogle Scholar
  23. Kotb, A.: Modeling of high-quality-factor XNOR gate using quantum-dot semiconductor optical amplifiers at 1 Tb/s. Braz. J. Phys. 45, 288–295 (2015c)ADSCrossRefGoogle Scholar
  24. Kotb, A.: Simulation of soliton all-optical logic XOR gate with semiconductor optical amplifier. Opt. Quantum Electron. 48(307), 1–11 (2016a)Google Scholar
  25. Kotb, A.: Numerically simulation of soliton OR gate with semiconductor optical amplifier-assisted delayed interferometer. Opt. Quantum Electron. 48(462), 1–12 (2016b)Google Scholar
  26. Kotb, A.: Ultrafast all-optical logic OR gate based on two-photon absorption with a semiconductor optical amplifier-assisted delayed interferometer. Korean Phys. Soc. 68, 201–205 (2016c)ADSCrossRefGoogle Scholar
  27. Kotb, A.: Simulation of high-quality-factor all-optical logic gates based on quantum-dot semiconductor optical amplifier at 1 Tb/s. Optik 126, 320–325 (2016d)ADSCrossRefGoogle Scholar
  28. Kotb, A.: Theoretical analysis of soliton NOR gate with semiconductor optical amplifier-assisted Mach–Zehnder interferometer. Opt. Quantum Electron. 49(180), 1–11 (2017)Google Scholar
  29. Kotb, A., Alamer, F.A.: Dispersion on all-optical logic XOR gate using semiconductor optical amplifier. Opt. Quantum Electron. 48(327), 1–10 (2016)Google Scholar
  30. Kotb, A., Maeda, J.: All-optical logic NXOR based on semiconductor optical amplifiers with the effect of amplified spontaneous emission. Optoelectron. Lett. 8, 437–440 (2012)ADSCrossRefGoogle Scholar
  31. Kotb, A., Zoiros, K.E.: Simulation of all-optical logic XNOR gate based on quantum- dot semiconductor optical amplifiers with amplified spontaneous emission. Opt. Quantum Electron. 45, 1213–1221 (2013)CrossRefGoogle Scholar
  32. Kotb, A., Zoiros, K.E.: Performance of all-optical XOR gate based on two-photon absorption in semiconductor optical amplifier-assisted Mach–Zehnder interferometer with effect of amplified spontaneous emission. Opt. Quantum Electron. 46, 935–944 (2014a)CrossRefGoogle Scholar
  33. Kotb, A., Zoiros, K.E.: On the design of all-optical gates based on quantum-dot semiconductor optical amplifier with effect of amplified spontaneous emission. Opt. Quantum Electron. 46, 977–989 (2014b)CrossRefGoogle Scholar
  34. Kotb, A., Zoiros, K.E.: 1 Tb/s high-quality factor NAND gate using quantum-dot semiconductor optical amplifiers in Mach–Zehnder interferometer”. Comput. Electron. 13, 555–561 (2014c)CrossRefGoogle Scholar
  35. Kotb, A., Zoiros, K.E.: Soliton all-optical logic AND gate with semiconductor optical amplifier-assisted Mach–Zehnder interferometer. Opt. Eng. 55(087109), 1–7 (2016)Google Scholar
  36. Kotb, A., Ma, S., Chen, Z., Dutta, N.K., Said, G.: All-optical logic NAND based on two-photon absorption in semiconductor optical amplifiers. Opt. Commun. 283, 4707–4712 (2010a)ADSCrossRefGoogle Scholar
  37. Kotb, A., Ma, S., Chen, Z., Dutta, N.K., Said, G.: All-optical logic NAND based on two-photon absorption. SPIE Photonic Devices + Applications 7, 77810D (2010b)CrossRefGoogle Scholar
  38. Kotb, A., Ma, S., Chen, Z., Dutta, N.K., Said, G.: Effect of amplified spontaneous emission on semiconductor optical amplifier based all-optical logic. Opt. Commun. 284, 5798–5803 (2011)ADSCrossRefGoogle Scholar
  39. Ma, S., Chen, Z., Dutta, N.K.: All-optical logic gates based on two-photon absorption in semiconductor optical amplifiers. Opt. Commun. 282, 4508–4512 (2009a)ADSCrossRefGoogle Scholar
  40. Ma, S., Sun, H., Chen, Z., Dutta, N.K.: High-speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers. Opt. Express 17(21), 18469–18477 (2009b)ADSCrossRefGoogle Scholar
  41. Ma, S., Kotb, A., Chen, Z., Dutta, N.K.: All-optical logic gates based on two-photon absorption. Proc. SPIE 7750, 77501L (2010a)ADSCrossRefGoogle Scholar
  42. Ma, S., Chen, Z., Sun, H., Dutta, N.K.: High-speed all-optical logic gates based on quantum-dot semiconductor optical amplifiers. Opt. Express 18, 6417–6422 (2010b)ADSCrossRefGoogle Scholar
  43. Patel, N.S., Hall, K.L., Rauschenbach, K.A.: Interferometric all-optical switches for ultrafast signal processing. Appl. Opt. 37, 2831–2842 (1998)ADSCrossRefGoogle Scholar
  44. Pereira, A., Ostermann, F., Cavalcanti, C.: On the use of a virtual Mach–Zehnder interferometer in the teaching of quantum mechanics. Phys. Educ. 44, 281–291 (2009)ADSCrossRefGoogle Scholar
  45. Saharia, A., Sharma, R.: An approach for Realization of all-optical NAND gate using the nonlinear effect in SOA. Int. J. Signal Process. Imaging Eng. 1, 13–17 (2014)Google Scholar
  46. Son, C.W., Kim, S.H., Jhon, Y.M., Byun, Y.T., Lee, S., Woo, D.H., Kim, S.K., Yoon, T.H.: Realization of all-optical XOR, NOR, and NAND gates in a single format by using semiconductor optical amplifiers. Jpn. J. Appl. Phys. 46, 232–234 (2007)ADSCrossRefGoogle Scholar
  47. Sotoa, H., Alvareza, E., Dıaz, C.A., Topomondzo, J., Erasmeb, D., Schares, L., Occhi, L., Guekos, G., Castro, M.: Design of an all-optical NOT XOR gate based on cross-polarization modulation in a semiconductor optical amplifier. Opt. Commun. 237, 121–131 (2004)ADSCrossRefGoogle Scholar
  48. Sun, H., Wang, Q., Dong, H., Dutta, N.K.: XOR performance of a quantum-dot semiconductor optical amplifier based Mach–Zehnder interferometer. Opt. Express 13, 1892–1899 (2005)ADSCrossRefGoogle Scholar
  49. Sun, H., Wang, Q., Dong, H., Dutta, N.K., Jaques, J., Piccirilli, A.B.: All-optical logic XOR gate using SOA-MZI-DI. IEEE J. Quantum Electron. 42, 747–781 (2006a)ADSCrossRefGoogle Scholar
  50. Sun, H., Wang, Q., Dong, H., Dutta, N.K.: All-optical logic performance of quantum-dot semiconductor amplifier-based devices. Microw Opt. Technol. Letts. 48, 29–35 (2006b)CrossRefGoogle Scholar
  51. Sun, H., Dong, H., Wang. Q., Dutta, N.K.: All-optical logic performance of quantum dot semiconductor amplifier-based devices. Proc. SPIE 6115, 61151H (2006c)ADSCrossRefGoogle Scholar
  52. Sun, H., Chen, Z., Ma, S., Dutta, N.K.: 80 Gb/s all-optical XNOR using four-wave mixing in highly nonlinear fibers. Proc. SPIE 6775, 67750A (2007a)ADSCrossRefGoogle Scholar
  53. Sun, H., Chen, Z., Ma, S., Dutta, N.K.: All-optical logic NOR gate at 40 Gb/s using SOA-based Mach–Zehnder interferometer. Proc. SPIE 6775, 67750F (2007b)ADSCrossRefGoogle Scholar
  54. Wang, Q., Dong, H., Sun, H., Dutta, N.K.: All-optical logic OR gate using SOA delayed Interferometer. Opt. Commun. 260, 81–86 (2006)ADSCrossRefGoogle Scholar
  55. Ye, X., Ye, P., Zhang, M.: All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer. Opt. Fiber Technol 12, 312–316 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Guo China-US Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics, and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.Department of Physics, Faculty of ScienceUniversity of FayoumFayoumEgypt
  3. 3.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations