Absorbing boundary condition (ABC) and perfectly matched layer (PML) in numerical beam propagation: a comparison

  • Ramesh Kumar
  • Anurag SharmaEmail author
Part of the following topical collections:
  1. 2018 - Optical Wave and Waveguide Theory and Numerical Modelling


The absorbing boundary condition (ABC) and the perfectly matched layer (PML) are employed to suppress the numerical reflections in wave propagation methods. The PML has earlier been shown to fail at the grazing angle propagation of beam. The ABC is preferred over the PML where refractive index is not an analytic function. We have explored the performance of the ABC in reflection-less absorption of non-paraxial propagation of beams and have compared it against the PML. We have considered an example of the propagation of Gaussian beams through a homogeneous medium terminated with ABC or PML. We have used the collocation method for propagation. We have found that both the boundary conditions are comparable in performance. The ABC performed relatively better than the PML for beams at smaller angles. However, the performance of the PML is better than that of the ABC at larger tilt angles.


Numerical methods Beam propagation Collocation method Perfectly matched layer (PML) Absorbing boundary condition (ABC) 



Ramesh Kumar acknowledges the University Grant Commission, Government of India for financial support.


  1. Agarwal, A., Sharma, A.: Perfectly matched layer in numerical wave propagation: factors that affect its performance. Appl. Opt. 43, 4225–4231 (2004)ADSCrossRefGoogle Scholar
  2. Banerjee, S., Sharma, A.: Propagation characteristics of optical waveguiding structures by direct solution of the Helmholtz equation for total fields. J. Opt. Soc. Am. A 6, 1884–1894 (1989)ADSCrossRefGoogle Scholar
  3. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic-waves. J. Comput. Phys. 114, 185–200 (1994)ADSMathSciNetCrossRefGoogle Scholar
  4. Chew, W.C., Weedon, W.H.: A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7, 599–604 (1994)ADSCrossRefGoogle Scholar
  5. Deshmukh, I., Liu, Q.H.: Pseudospectral beam-propagation method for optical waveguides. IEEE Photonics Technol. Lett. 15, 60–62 (2003)ADSCrossRefGoogle Scholar
  6. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31, 629–651 (1977)ADSMathSciNetCrossRefGoogle Scholar
  7. Feit, M.D., Fleck Jr., J.A.: Light propagation in graded index optical fibers. Appl. Opt. 17, 3990–3998 (1978)ADSCrossRefGoogle Scholar
  8. Hadley, G.R.: Transparent boundary condition for beam propagation. Opt. Lett. 16, 624–626 (1991)ADSCrossRefGoogle Scholar
  9. Hadley, G.R.: Transparent boundary condition for the beam propagation method. Opt. Lett. 28, 624–626 (1992a)Google Scholar
  10. Hadley, G.R.: Transparent boundary condition for the beam propagation method. IEEE J. Quantum Electron. 28, 363–370 (1992b)ADSCrossRefGoogle Scholar
  11. Jimenez, D., Perez-Murano, F.: Comparison of highly efficient absorbing boundary conditions for the beam propagation method. J. Opt. Soc. Am. A 18, 2015–2025 (2001)ADSCrossRefGoogle Scholar
  12. Khankhoje, U.K., Cwik, T.A.: A mesh reconfiguration scheme for speeding up Monte Carlo simulations of electromagnetic scattering by random rough surfaces. Comput. Phys. Commun. 185, 445–447 (2014)ADSCrossRefGoogle Scholar
  13. Koshiba, M., Tsuji, Y., Sasaki, S.: High-performance absorbing boundary conditions for photonic crystal waveguide simulations. IEEE Microw. Wirel. Compon. Lett. 11, 152–154 (2001)CrossRefGoogle Scholar
  14. Lindman, E.L.: Free space boundary conditions of the time dependent wave equation. J. Comput. Phys. 18, 66–78 (1975)ADSCrossRefGoogle Scholar
  15. Loh, P.-R., Oskooi, A.F., Ibanescu, M., Skorobogatiy, M., Johnson, S.G.: Fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures. Phys. Rev. E 79, 065601–065604 (2009)ADSCrossRefGoogle Scholar
  16. Mitchell, A., Aberle, J.T., Kokotoff, D.M., Austin, M.W.: An anisotropic PML for use with biaxial media. IEEE Trans. Microw. Theory Tech. 47, 374–377 (1999)ADSCrossRefGoogle Scholar
  17. Mur, G.: Absorbing boundary condition for the finite difference approximation of the time-domain electromagnetic field equations. IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981)CrossRefGoogle Scholar
  18. Oskooi, A.F., Zhang, L., Avniel, Y., Johnson, S.G.: The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers. Opt. Express 16, 11376–11392 (2008)ADSCrossRefGoogle Scholar
  19. Rappaport, C.M.: Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space. IEEE Microw. Guid. Wave Lett. 5, 90–92 (1995)CrossRefGoogle Scholar
  20. Sacks, Z.S., Kingsland, D.M., Lee, R., Lee, J.-F.: A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antennas Propag. 43, 1460–1463 (1995)ADSCrossRefGoogle Scholar
  21. Selleri, S., Vincetti, L., Zoboli, M.: Full-vector finite-element beam propagation method for anisotropic optical device analysis. IEEE J. Quantum Electron. 36, 1392–1401 (2000)ADSCrossRefGoogle Scholar
  22. Sharma, A.: Collocation method for wave propagation through optical waveguiding structure. In: Huang, W.P. (ed.) Methods for Modelling and Simulations of Guided-Wave Optoelectronic Devices, vol. 11, pp. 143–198. EMW, Cambridge, MA (1995)Google Scholar
  23. Sharma, A., Banerjee, S.: Method for propagation of total fields or beams through optical waveguides. Opt. Lett. 14, 94–96 (1989)ADSCrossRefGoogle Scholar
  24. Sharma, A., Taneja, A.: Unconditionally stable procedure to propagate beams through optical waveguides using the collocation method. Opt. Lett. 16, 1162–1164 (1991)ADSCrossRefGoogle Scholar
  25. Sharma, A., Taneja, A.: Variable-transformed collocation method for field propagation through waveguiding structures. Opt. Lett. 17, 804–806 (1992)ADSCrossRefGoogle Scholar
  26. Shibayama, J., Takahashi, T., Yamauchi, J.: Comparative study of absorbing boundary conditions for the time-domain beam propagation method. IEEE Photonics Technol. Lett. 13, 314–316 (2001)ADSCrossRefGoogle Scholar
  27. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite Difference Time-Domain Method. Artech, Norwood (2000)zbMATHGoogle Scholar
  28. Taneja, A., Sharma, A.: Propagation of beams through optical waveguiding structures: comparison of the beam-propagation method and the collocation method. J. Opt. Soc. Am. A 10, 1739–1745 (1993)ADSCrossRefGoogle Scholar
  29. Tedeschi, N., Frezza, F., Sihvola, A.: On the perfectly matched layer and the DB boundary condition. J. Opt. Soc. Am. A 30, 1941–1946 (2013)ADSCrossRefGoogle Scholar
  30. Teixeira, F.L., Chew, W.C.: General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media. IEEE Microw. Guid. Wave Lett. 8, 223–225 (1998)CrossRefGoogle Scholar
  31. Vasallo, C., Collino, F.: Highly efficient absorbing boundary conditions for the beam propagation method. J. Lightwave Technol. 14, 1570–1577 (1996)ADSCrossRefGoogle Scholar
  32. Xu, C.L., Huang, W.P.: Finite-difference beam propagation methods for guided-wave optics. In: Huang, W. (ed.) Methods for Modeling and Simulation of Optical Guided-Wave Devices. Progress in Electromagnetic Research, vol. 11, pp. 1–49. EMW, Cambridge, MA (1995)Google Scholar
  33. Yevick, D., Jun, Yu.: Optimal absorbing boundary conditions. J. Opt. Soc. Am. A 12, 107–110 (1994)ADSCrossRefGoogle Scholar
  34. Zhou, D., Huang, W.P., Xu, C.L., Fang, D.G., Chen, B.: The perfectly matched layer boundary condition for scalar finite-difference time-domain method. IEEE Photonics Technol. Lett. 13, 454–456 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Department of PhysicsGovernment College for WomenJindIndia

Personalised recommendations