Advertisement

An asymmetric hybrid cryptosystem using equal modulus and random decomposition in hybrid transform domain

  • Pankaj RakhejaEmail author
  • Rekha Vig
  • Phool Singh
Article
  • 4 Downloads

Abstract

In this paper, an asymmetric hybrid cryptosystem with coherent superposition, equal modulus and random decomposition in hybrid transform domain is proposed. To further strengthen the security of the cryptosystem, a hyperchaotic system is used as a pixel-swapping procedure. The hybrid transform is generated by utilizing fractional Fourier transform of various orders and Walsh transform. The hyperchaotic framework’s parameters and starting conditions alongside the fractional orders of the fractional Fourier transform extend the key-space and consequently give extra strength to the proposed cryptosystem. The designed cryptosystem has an extended key-space to avoid any brute-force attack and is non-linear in nature. The scheme is validated on gray-scale images. Computer based simulations have been performed to verify the validity and the performance of the proposed cryptosystem against different types of attacks. Results demonstrate that the proposed cryptosystem not only offers higher protection against noise attacks but is also invulnerable to special attack.

Keywords

4D hyperchaotic system Equal modulus decomposition Random decomposition Fractional Fourier transform Hybrid multi-resolution wavelet 

Notes

References

  1. Abuturab, M.R.: Group multiple-image encoding and watermarking using coupled logistic maps and gyrator wavelet transform. JOSA A 32, 1811–1820 (2015).  https://doi.org/10.1364/JOSAA.32.001811 ADSCrossRefGoogle Scholar
  2. Barfungpa, S.P., Abuturab, M.R.: Asymmetric cryptosystem using coherent superposition and equal modulus decomposition of fractional Fourier spectrum. Opt. Quantum Electron 48(11), 520 (2016).  https://doi.org/10.1007/s11082-016-0786-5 CrossRefGoogle Scholar
  3. Biryukov, A.: Chosen Ciphertext Attack. Encyclopedia of Cryptography and Security, pp. 205–205. Springer, Boston (2011).  https://doi.org/10.1007/978-1-4419-5906-5_556
  4. Biryukov, A.: Known Plaintext Attack. Encyclopedia of Cryptography and Security, pp. 704–705, Springer, Boston (2011).  https://doi.org/10.1007/978-1-4419-5906-5_588
  5. Butcher, J.: The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. Wiley, Hoboken (1987)zbMATHGoogle Scholar
  6. Cai, J., Shen, X.: Modified optical asymmetric image cryptosystem based on coherent superposition and equal modulus decomposition. Opt. Laser Technol. 95, 105–112 (2017).  https://doi.org/10.1016/j.optlastec.2017.04.018 ADSCrossRefGoogle Scholar
  7. Cai, J., Shen, X., Lei, M., Lin, C., Dou, S.: Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Opt. Lett. 40, 475–478 (2015).  https://doi.org/10.1364/OL.40.000475 ADSCrossRefGoogle Scholar
  8. Candan, C., Kutay, M.A., Ozaktas, H.M.: The discrete fractional Fourier transform. IEEE Trans. Signal Process. 48, 1329–1337 (2000).  https://doi.org/10.1109/78.839980 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. Chai, X., Chen, Y., Broyde, L.: A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers Eng. 88, 197–213 (2017).  https://doi.org/10.1016/j.optlaseng.2016.08.009 CrossRefGoogle Scholar
  10. Chen, L., Zhao, D.: Optical image encryption with Hartley transforms. Opt. Lett. 31, 3438–3440 (2006).  https://doi.org/10.1364/OL.31.003438 ADSCrossRefGoogle Scholar
  11. Chen, A., Lu, J., Lü, J., Yu, S.: Generating hyperchaotic Lü attractor via state feedback control. Phys Stat Mech Appl 364, 103–110 (2006).  https://doi.org/10.1016/j.physa.2005.09.039 CrossRefGoogle Scholar
  12. Chen, W., Chen, X., Sheppard, C.J.R.: Optical image encryption based on diffractive imaging. Opt. Lett. 35, 3817–3819 (2010).  https://doi.org/10.1364/OL.35.003817 ADSCrossRefGoogle Scholar
  13. Chen, J.-X., Zhu, Z.-L., Fu, C., Zhang, L.-B., Zhang, Y.: Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding. J. Opt. 16(12), 125403 (2014).  https://doi.org/10.1088/2040-8978/16/12/125403 ADSCrossRefGoogle Scholar
  14. Chen, H., Tanougast, C., Liu, Z., Sieler, L.: Asymmetric optical cryptosystem for color image based on equal modulus decomposition in gyrator transform domains. Opt. Lasers Eng. 93, 1–8 (2017).  https://doi.org/10.1016/j.optlaseng.2017.01.005 CrossRefGoogle Scholar
  15. Chen, H., Liu, Z., Zhu, L., Tanougast, C., Blondel, W.: Asymmetric color cryptosystem using chaotic Ushiki map and equal modulus decomposition in fractional Fourier transform domains. Opt. Lasers Eng. 112, 7–15 (2019).  https://doi.org/10.1016/j.optlaseng.2018.08.020 CrossRefGoogle Scholar
  16. Deng, X.: Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition: comment. Opt. Lett. 40(16), 3913 (2015).  https://doi.org/10.1364/OL.40.003913 ADSCrossRefGoogle Scholar
  17. Elshamy, A.M., Rashed, A.N.Z., Mohamed, A.E.N.A., Faragalla, O.S., Mu, Y., Alshebeili, S.A., et al.: Optical image encryption based on chaotic baker map and double random phase encoding. J Light Technol 31, 2533–2539 (2013).  https://doi.org/10.1109/JLT.2013.2267891 CrossRefGoogle Scholar
  18. Fatima, A., Mehra, I., Nishchal, N.K.: Optical image encryption using equal modulus decomposition and multiple diffractive imaging. J. Opt. 18(8), 085701 (2016).  https://doi.org/10.1088/2040-8978/18/8/085701 ADSCrossRefGoogle Scholar
  19. Frauel, Y., Castro, A., Naughton, T.J., Javidi, B.: Resistance of the double random phase encryption against various attacks. Opt. Express 15, 10253–10265 (2007).  https://doi.org/10.1364/OE.15.010253 ADSCrossRefGoogle Scholar
  20. Fu, C., Zhang, G., Zhu, M., Chen, Z., Lei, W.: A new chaos-based color image encryption scheme with an efficient substitution keystream generation strategy. Secur Commun Netw (2018).  https://doi.org/10.1155/2018/2708532 CrossRefGoogle Scholar
  21. Gopinathan, U., Monaghan, D.S., Naughton, T.J., Sheridan, J.T.: A known-plaintext heuristic attack on the Fourier plane encryption algorithm. Opt. Express 14, 3181–3186 (2006).  https://doi.org/10.1364/OE.14.003181 ADSCrossRefGoogle Scholar
  22. Hennelly, B., Sheridan, J.T.: Optical image encryption by random shifting in fractional Fourier domains. Opt. Lett. 28, 269–271 (2003).  https://doi.org/10.1364/OL.28.000269 ADSCrossRefGoogle Scholar
  23. Huang, J.-J., Hwang, H.-E., Chen, C.-Y., Chen, C.-M.: Lensless multiple-image optical encryption based on improved phase retrieval algorithm. Appl. Opt. 51, 2388–2394 (2012).  https://doi.org/10.1364/AO.51.002388 ADSCrossRefGoogle Scholar
  24. Javidi, B., Nomura, T.: Securing information by use of digital holography. Opt. Lett. 25, 28–30 (2000).  https://doi.org/10.1364/OL.25.000028 ADSCrossRefGoogle Scholar
  25. Kekre, H.B., Thepade, S.D.: Image retrieval using non-involutional orthogonal Kekre transform. Int. J. Multidiscip. Res. Adv. Eng. 1, 189–203 (2009)Google Scholar
  26. Kekre, H.B., Sarode, T.K., Vig, R.: A new multi-resolution hybrid wavelet for analysis and image compression. Int. J. Electron. 102, 2108–2126 (2015).  https://doi.org/10.1080/00207217.2015.1020882 CrossRefGoogle Scholar
  27. Liu, Z., Chen, H., Liu, T., Li, P., Xu, L., Dai, J., et al.: Image encryption by using gyrator transform and Arnold transform. J. Electron. Imaging 20(1), 013020 (2011).  https://doi.org/10.1117/1.3557790 ADSCrossRefGoogle Scholar
  28. Liu, W., Liu, Z., Liu, S.: Asymmetric cryptosystem using random binary phase modulation based on mixture retrieval type of Yang-Gu algorithm. Opt. Lett. 38, 1651–1653 (2013).  https://doi.org/10.1364/OL.38.001651 ADSCrossRefGoogle Scholar
  29. Lohmann, A.W.: Image rotation, Wigner rotation, and the fractional Fourier transform. JOSA A 10, 2181–2186 (1993).  https://doi.org/10.1364/JOSAA.10.002181 ADSCrossRefGoogle Scholar
  30. Lü, J., Chen, G., Zhang, S.: Dynamical analysis of a new chaotic attractor. Int J Bifurcat Chaos 12, 1001–1015 (2002).  https://doi.org/10.1142/S0218127402004851 MathSciNetCrossRefzbMATHGoogle Scholar
  31. Mehra, I., Nishchal, N.K.: Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding. Opt. Express 22, 5474–5482 (2014).  https://doi.org/10.1364/OE.22.005474 ADSCrossRefGoogle Scholar
  32. Nishchal, N.K., Joseph, J., Singh, K.: Securing information using fractional Fourier transform in digital holography. Opt. Commun. 235, 253–259 (2004).  https://doi.org/10.1016/j.optcom.2004.02.052 ADSCrossRefGoogle Scholar
  33. Nomura, T., Javidi, B.: Optical encryption using a joint transform correlator architecture. Opt. Eng. 39, 2031–2036 (2000).  https://doi.org/10.1117/1.1304844 ADSCrossRefGoogle Scholar
  34. Peng, X., Zhang, P., Wei, H., Yu, B.: Known-plaintext attack on optical encryption based on double random phase keys. Opt. Lett. 31, 1044–1046 (2006).  https://doi.org/10.1364/OL.31.001044 ADSCrossRefGoogle Scholar
  35. Poon, T.-C., Liu, J.-P. Introduction to Modern Digital Holography by Ting-Chung Poon. Camb Core 2014.  https://doi.org/10.1017/cbo9781139061346
  36. Qin, W.: Universal and special keys based on phase-truncated Fourier transform. Opt. Eng. 50(8), 080501 (2011).  https://doi.org/10.1117/1.3607421 ADSCrossRefGoogle Scholar
  37. Qin, W., Peng, X.: Asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Lett. 35, 118–120 (2010).  https://doi.org/10.1364/OL.35.000118 ADSCrossRefGoogle Scholar
  38. Rajput, S.K., Nishchal, N.K.: Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform. Appl. Opt. 52, 871–878 (2013a).  https://doi.org/10.1364/AO.52.000871 ADSCrossRefGoogle Scholar
  39. Rajput, S.K., Nishchal, N.K.: Known-plaintext attack on encryption domain independent optical asymmetric cryptosystem. Opt. Commun. 309, 231–235 (2013b).  https://doi.org/10.1016/j.optcom.2013.06.036 ADSCrossRefGoogle Scholar
  40. Refregier, P., Javidi, B.: Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20, 767–769 (1995).  https://doi.org/10.1364/OL.20.000767 ADSCrossRefGoogle Scholar
  41. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978).  https://doi.org/10.1145/359340.359342 MathSciNetCrossRefzbMATHGoogle Scholar
  42. Sharma, N., Saini, I., Yadav, A., Singh, P.: Phase-image encryption based on 3D-Lorenz chaotic system and double random phase encoding. 3D Res (2017).  https://doi.org/10.1007/s13319-017-0149-4 CrossRefGoogle Scholar
  43. Singh, P., Yadav, A.K., Singh, K., Saini, I.: Optical image encryption in the fractional Hartley domain, using Arnold transform and singular value decomposition. AIP Conf. Proc. 1802, 020017 (2017a).  https://doi.org/10.1063/1.4973267 CrossRefGoogle Scholar
  44. Singh, P., Saini, I., Yadav, A.K.: Analysis of Lorenz-chaos and exclusive-OR based image encryption scheme. Int J Soc Comput Cyber Phys Syst 2, 59 (2017b).  https://doi.org/10.1504/IJSCCPS.2017.10009739 CrossRefGoogle Scholar
  45. Situ, G., Zhang, J.: Double random-phase encoding in the Fresnel domain. Opt. Lett. 29, 1584–1586 (2004).  https://doi.org/10.1364/OL.29.001584 ADSCrossRefGoogle Scholar
  46. Smid, M.E., Branstad, D.K.: Data encryption standard: past and future. Proc. IEEE 76, 550–559 (1988).  https://doi.org/10.1109/5.4441 CrossRefGoogle Scholar
  47. Tajahuerce, E., Matoba, O., Verrall, S.C., Javidi, B.: Optoelectronic information encryption with phase-shifting interferometry. Appl. Opt. 39, 2313–2320 (2000).  https://doi.org/10.1364/AO.39.002313 ADSCrossRefGoogle Scholar
  48. The Design of Rijndael—AES—the Advanced Encryption Standard|Joan Daemen|Springer. https://www.springer.com/in/book/9783540425809
  49. Towghi, N., Javidi, B., Luo, Z.: Fully phase encrypted image processor. J. Opt. Soc. Am. A 16(8), 1915–1927 (1999).  https://doi.org/10.1364/JOSAA.16.001915 ADSCrossRefGoogle Scholar
  50. Unnikrishnan, G., Joseph, J., Singh, K.: Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt. Lett. 25, 887–889 (2000).  https://doi.org/10.1364/OL.25.000887 ADSCrossRefGoogle Scholar
  51. Wang, Z., Sheikh, H.R.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004).  https://doi.org/10.1109/tip.2003.819861 ADSCrossRefGoogle Scholar
  52. Wang, X., Zhao, D.: Security enhancement of a phase-truncation based image encryption algorithm. Appl. Opt. 50, 6645–6651 (2011)ADSCrossRefGoogle Scholar
  53. Wang, X., Zhao, D.: A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Commun. 285, 1078–1081 (2012).  https://doi.org/10.1016/j.optcom.2011.12.017 ADSCrossRefGoogle Scholar
  54. Wang, X., Zhao, D.: Simultaneous nonlinear encryption of grayscale and color images based on phase-truncated fractional Fourier transform and optical superposition principle. Appl. Opt. 52, 6170–6178 (2013a)ADSCrossRefGoogle Scholar
  55. Wang, X., Zhao, D.: Amplitude-phase retrieval attack free cryptosystem based on direct attack to phase-truncated Fourier-transform-based encryption using a random amplitude mask. Opt. Lett. 38, 3684–3686 (2013b).  https://doi.org/10.1364/OL.38.003684 ADSCrossRefGoogle Scholar
  56. Wang, X., Chen, Y., Dai, C., Zhao, D.: Discussion and a new attack of the optical asymmetric cryptosystem based on phase-truncated Fourier transform. Appl. Opt. 53, 208–213 (2014).  https://doi.org/10.1364/AO.53.000208 ADSCrossRefGoogle Scholar
  57. Wang, Y., Quan, C., Tay, C.J.: Improved method of attack on an asymmetric cryptosystem based on phase-truncated Fourier transform. Appl. Opt. 54, 6874–6881 (2015).  https://doi.org/10.1364/AO.54.006874 ADSCrossRefGoogle Scholar
  58. Wang, Y., Quan, C., Tay, C.J.: New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition. Appl. Opt. 55, 679–686 (2016)ADSCrossRefGoogle Scholar
  59. Xu, H., Xu, W., Wang, S., Wu, S.: Asymmetric optical cryptosystem based on modulus decomposition in Fresnel domain. Opt. Commun. 402, 302–310 (2017).  https://doi.org/10.1016/j.optcom.2017.05.035 ADSCrossRefGoogle Scholar
  60. Xu, H., Xu, W., Wang, S., Wu, S.: Phase-only asymmetric optical cryptosystem based on random modulus decomposition. J. Mod. Opt. 65, 1245–1252 (2018).  https://doi.org/10.1080/09500340.2018.1431314 ADSCrossRefGoogle Scholar
  61. Zhou, N., Wang, Y., Gong, L.: Novel optical image encryption scheme based on fractional Mellin transform. Opt. Commun. 284, 3234–3242 (2011).  https://doi.org/10.1016/j.optcom.2011.02.065 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EECEThe NorthCap UniversityGurugramIndia
  2. 2.Department of Mathematics, SOETCentral University of HaryanaMahendergarhIndia

Personalised recommendations