An asymmetric hybrid cryptosystem using equal modulus and random decomposition in hybrid transform domain

  • Pankaj RakhejaEmail author
  • Rekha Vig
  • Phool Singh


In this paper, an asymmetric hybrid cryptosystem with coherent superposition, equal modulus and random decomposition in hybrid transform domain is proposed. To further strengthen the security of the cryptosystem, a hyperchaotic system is used as a pixel-swapping procedure. The hybrid transform is generated by utilizing fractional Fourier transform of various orders and Walsh transform. The hyperchaotic framework’s parameters and starting conditions alongside the fractional orders of the fractional Fourier transform extend the key-space and consequently give extra strength to the proposed cryptosystem. The designed cryptosystem has an extended key-space to avoid any brute-force attack and is non-linear in nature. The scheme is validated on gray-scale images. Computer based simulations have been performed to verify the validity and the performance of the proposed cryptosystem against different types of attacks. Results demonstrate that the proposed cryptosystem not only offers higher protection against noise attacks but is also invulnerable to special attack.


4D hyperchaotic system Equal modulus decomposition Random decomposition Fractional Fourier transform Hybrid multi-resolution wavelet 



  1. Abuturab, M.R.: Group multiple-image encoding and watermarking using coupled logistic maps and gyrator wavelet transform. JOSA A 32, 1811–1820 (2015). ADSCrossRefGoogle Scholar
  2. Barfungpa, S.P., Abuturab, M.R.: Asymmetric cryptosystem using coherent superposition and equal modulus decomposition of fractional Fourier spectrum. Opt. Quantum Electron 48(11), 520 (2016). CrossRefGoogle Scholar
  3. Biryukov, A.: Chosen Ciphertext Attack. Encyclopedia of Cryptography and Security, pp. 205–205. Springer, Boston (2011).
  4. Biryukov, A.: Known Plaintext Attack. Encyclopedia of Cryptography and Security, pp. 704–705, Springer, Boston (2011).
  5. Butcher, J.: The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. Wiley, Hoboken (1987)zbMATHGoogle Scholar
  6. Cai, J., Shen, X.: Modified optical asymmetric image cryptosystem based on coherent superposition and equal modulus decomposition. Opt. Laser Technol. 95, 105–112 (2017). ADSCrossRefGoogle Scholar
  7. Cai, J., Shen, X., Lei, M., Lin, C., Dou, S.: Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Opt. Lett. 40, 475–478 (2015). ADSCrossRefGoogle Scholar
  8. Candan, C., Kutay, M.A., Ozaktas, H.M.: The discrete fractional Fourier transform. IEEE Trans. Signal Process. 48, 1329–1337 (2000). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. Chai, X., Chen, Y., Broyde, L.: A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers Eng. 88, 197–213 (2017). CrossRefGoogle Scholar
  10. Chen, L., Zhao, D.: Optical image encryption with Hartley transforms. Opt. Lett. 31, 3438–3440 (2006). ADSCrossRefGoogle Scholar
  11. Chen, A., Lu, J., Lü, J., Yu, S.: Generating hyperchaotic Lü attractor via state feedback control. Phys Stat Mech Appl 364, 103–110 (2006). CrossRefGoogle Scholar
  12. Chen, W., Chen, X., Sheppard, C.J.R.: Optical image encryption based on diffractive imaging. Opt. Lett. 35, 3817–3819 (2010). ADSCrossRefGoogle Scholar
  13. Chen, J.-X., Zhu, Z.-L., Fu, C., Zhang, L.-B., Zhang, Y.: Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding. J. Opt. 16(12), 125403 (2014). ADSCrossRefGoogle Scholar
  14. Chen, H., Tanougast, C., Liu, Z., Sieler, L.: Asymmetric optical cryptosystem for color image based on equal modulus decomposition in gyrator transform domains. Opt. Lasers Eng. 93, 1–8 (2017). CrossRefGoogle Scholar
  15. Chen, H., Liu, Z., Zhu, L., Tanougast, C., Blondel, W.: Asymmetric color cryptosystem using chaotic Ushiki map and equal modulus decomposition in fractional Fourier transform domains. Opt. Lasers Eng. 112, 7–15 (2019). CrossRefGoogle Scholar
  16. Deng, X.: Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition: comment. Opt. Lett. 40(16), 3913 (2015). ADSCrossRefGoogle Scholar
  17. Elshamy, A.M., Rashed, A.N.Z., Mohamed, A.E.N.A., Faragalla, O.S., Mu, Y., Alshebeili, S.A., et al.: Optical image encryption based on chaotic baker map and double random phase encoding. J Light Technol 31, 2533–2539 (2013). CrossRefGoogle Scholar
  18. Fatima, A., Mehra, I., Nishchal, N.K.: Optical image encryption using equal modulus decomposition and multiple diffractive imaging. J. Opt. 18(8), 085701 (2016). ADSCrossRefGoogle Scholar
  19. Frauel, Y., Castro, A., Naughton, T.J., Javidi, B.: Resistance of the double random phase encryption against various attacks. Opt. Express 15, 10253–10265 (2007). ADSCrossRefGoogle Scholar
  20. Fu, C., Zhang, G., Zhu, M., Chen, Z., Lei, W.: A new chaos-based color image encryption scheme with an efficient substitution keystream generation strategy. Secur Commun Netw (2018). CrossRefGoogle Scholar
  21. Gopinathan, U., Monaghan, D.S., Naughton, T.J., Sheridan, J.T.: A known-plaintext heuristic attack on the Fourier plane encryption algorithm. Opt. Express 14, 3181–3186 (2006). ADSCrossRefGoogle Scholar
  22. Hennelly, B., Sheridan, J.T.: Optical image encryption by random shifting in fractional Fourier domains. Opt. Lett. 28, 269–271 (2003). ADSCrossRefGoogle Scholar
  23. Huang, J.-J., Hwang, H.-E., Chen, C.-Y., Chen, C.-M.: Lensless multiple-image optical encryption based on improved phase retrieval algorithm. Appl. Opt. 51, 2388–2394 (2012). ADSCrossRefGoogle Scholar
  24. Javidi, B., Nomura, T.: Securing information by use of digital holography. Opt. Lett. 25, 28–30 (2000). ADSCrossRefGoogle Scholar
  25. Kekre, H.B., Thepade, S.D.: Image retrieval using non-involutional orthogonal Kekre transform. Int. J. Multidiscip. Res. Adv. Eng. 1, 189–203 (2009)Google Scholar
  26. Kekre, H.B., Sarode, T.K., Vig, R.: A new multi-resolution hybrid wavelet for analysis and image compression. Int. J. Electron. 102, 2108–2126 (2015). CrossRefGoogle Scholar
  27. Liu, Z., Chen, H., Liu, T., Li, P., Xu, L., Dai, J., et al.: Image encryption by using gyrator transform and Arnold transform. J. Electron. Imaging 20(1), 013020 (2011). ADSCrossRefGoogle Scholar
  28. Liu, W., Liu, Z., Liu, S.: Asymmetric cryptosystem using random binary phase modulation based on mixture retrieval type of Yang-Gu algorithm. Opt. Lett. 38, 1651–1653 (2013). ADSCrossRefGoogle Scholar
  29. Lohmann, A.W.: Image rotation, Wigner rotation, and the fractional Fourier transform. JOSA A 10, 2181–2186 (1993). ADSCrossRefGoogle Scholar
  30. Lü, J., Chen, G., Zhang, S.: Dynamical analysis of a new chaotic attractor. Int J Bifurcat Chaos 12, 1001–1015 (2002). MathSciNetCrossRefzbMATHGoogle Scholar
  31. Mehra, I., Nishchal, N.K.: Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding. Opt. Express 22, 5474–5482 (2014). ADSCrossRefGoogle Scholar
  32. Nishchal, N.K., Joseph, J., Singh, K.: Securing information using fractional Fourier transform in digital holography. Opt. Commun. 235, 253–259 (2004). ADSCrossRefGoogle Scholar
  33. Nomura, T., Javidi, B.: Optical encryption using a joint transform correlator architecture. Opt. Eng. 39, 2031–2036 (2000). ADSCrossRefGoogle Scholar
  34. Peng, X., Zhang, P., Wei, H., Yu, B.: Known-plaintext attack on optical encryption based on double random phase keys. Opt. Lett. 31, 1044–1046 (2006). ADSCrossRefGoogle Scholar
  35. Poon, T.-C., Liu, J.-P. Introduction to Modern Digital Holography by Ting-Chung Poon. Camb Core 2014.
  36. Qin, W.: Universal and special keys based on phase-truncated Fourier transform. Opt. Eng. 50(8), 080501 (2011). ADSCrossRefGoogle Scholar
  37. Qin, W., Peng, X.: Asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Lett. 35, 118–120 (2010). ADSCrossRefGoogle Scholar
  38. Rajput, S.K., Nishchal, N.K.: Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform. Appl. Opt. 52, 871–878 (2013a). ADSCrossRefGoogle Scholar
  39. Rajput, S.K., Nishchal, N.K.: Known-plaintext attack on encryption domain independent optical asymmetric cryptosystem. Opt. Commun. 309, 231–235 (2013b). ADSCrossRefGoogle Scholar
  40. Refregier, P., Javidi, B.: Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20, 767–769 (1995). ADSCrossRefGoogle Scholar
  41. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978). MathSciNetCrossRefzbMATHGoogle Scholar
  42. Sharma, N., Saini, I., Yadav, A., Singh, P.: Phase-image encryption based on 3D-Lorenz chaotic system and double random phase encoding. 3D Res (2017). CrossRefGoogle Scholar
  43. Singh, P., Yadav, A.K., Singh, K., Saini, I.: Optical image encryption in the fractional Hartley domain, using Arnold transform and singular value decomposition. AIP Conf. Proc. 1802, 020017 (2017a). CrossRefGoogle Scholar
  44. Singh, P., Saini, I., Yadav, A.K.: Analysis of Lorenz-chaos and exclusive-OR based image encryption scheme. Int J Soc Comput Cyber Phys Syst 2, 59 (2017b). CrossRefGoogle Scholar
  45. Situ, G., Zhang, J.: Double random-phase encoding in the Fresnel domain. Opt. Lett. 29, 1584–1586 (2004). ADSCrossRefGoogle Scholar
  46. Smid, M.E., Branstad, D.K.: Data encryption standard: past and future. Proc. IEEE 76, 550–559 (1988). CrossRefGoogle Scholar
  47. Tajahuerce, E., Matoba, O., Verrall, S.C., Javidi, B.: Optoelectronic information encryption with phase-shifting interferometry. Appl. Opt. 39, 2313–2320 (2000). ADSCrossRefGoogle Scholar
  48. The Design of Rijndael—AES—the Advanced Encryption Standard|Joan Daemen|Springer.
  49. Towghi, N., Javidi, B., Luo, Z.: Fully phase encrypted image processor. J. Opt. Soc. Am. A 16(8), 1915–1927 (1999). ADSCrossRefGoogle Scholar
  50. Unnikrishnan, G., Joseph, J., Singh, K.: Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt. Lett. 25, 887–889 (2000). ADSCrossRefGoogle Scholar
  51. Wang, Z., Sheikh, H.R.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). ADSCrossRefGoogle Scholar
  52. Wang, X., Zhao, D.: Security enhancement of a phase-truncation based image encryption algorithm. Appl. Opt. 50, 6645–6651 (2011)ADSCrossRefGoogle Scholar
  53. Wang, X., Zhao, D.: A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Commun. 285, 1078–1081 (2012). ADSCrossRefGoogle Scholar
  54. Wang, X., Zhao, D.: Simultaneous nonlinear encryption of grayscale and color images based on phase-truncated fractional Fourier transform and optical superposition principle. Appl. Opt. 52, 6170–6178 (2013a)ADSCrossRefGoogle Scholar
  55. Wang, X., Zhao, D.: Amplitude-phase retrieval attack free cryptosystem based on direct attack to phase-truncated Fourier-transform-based encryption using a random amplitude mask. Opt. Lett. 38, 3684–3686 (2013b). ADSCrossRefGoogle Scholar
  56. Wang, X., Chen, Y., Dai, C., Zhao, D.: Discussion and a new attack of the optical asymmetric cryptosystem based on phase-truncated Fourier transform. Appl. Opt. 53, 208–213 (2014). ADSCrossRefGoogle Scholar
  57. Wang, Y., Quan, C., Tay, C.J.: Improved method of attack on an asymmetric cryptosystem based on phase-truncated Fourier transform. Appl. Opt. 54, 6874–6881 (2015). ADSCrossRefGoogle Scholar
  58. Wang, Y., Quan, C., Tay, C.J.: New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition. Appl. Opt. 55, 679–686 (2016)ADSCrossRefGoogle Scholar
  59. Xu, H., Xu, W., Wang, S., Wu, S.: Asymmetric optical cryptosystem based on modulus decomposition in Fresnel domain. Opt. Commun. 402, 302–310 (2017). ADSCrossRefGoogle Scholar
  60. Xu, H., Xu, W., Wang, S., Wu, S.: Phase-only asymmetric optical cryptosystem based on random modulus decomposition. J. Mod. Opt. 65, 1245–1252 (2018). ADSCrossRefGoogle Scholar
  61. Zhou, N., Wang, Y., Gong, L.: Novel optical image encryption scheme based on fractional Mellin transform. Opt. Commun. 284, 3234–3242 (2011). ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EECEThe NorthCap UniversityGurugramIndia
  2. 2.Department of Mathematics, SOETCentral University of HaryanaMahendergarhIndia

Personalised recommendations