Advertisement

Coherence and entropy squeezing in the spin-boson model under non-Markovian environment

  • K. BerradaEmail author
  • O. Aldaghri
Article

Abstract

We study the dynamical behavior of the coherence and squeezing for a two-level system immersed in an environment modeled by a spin degree of freedom in a magnetic field coupled linearly to an oscillator bath with non-Markovian environment. The dependence of the coherence and squeezing on the system and reservoir parameters shows that these quantities could be greatly controlled and manipulated with the assistance of the reservoir cutoff frequency, system oscillator frequency, and reservoir temperature. Moreover, we show that the proper choice of the external control field can make further control on the coherence and squeezing of the atomic system under the effect of environmental noises. The results show new interest features that are usefully utilized in controlling the physical quantities and show how the enhancement and preservation of coherence and squeezing can greatly benefit from the combination of the all physical parameters.

Keywords

Mesoscopic systems Spin systems Spin-boson model Coherence Entropy Squeezing 

Notes

References

  1. Abdel-Khalek, S., Berrada, K., Eleuch, H., Abel-Aty, M.: Dynamics of Wehrl entropy of a degenerate two-photon process with a nonlinear medium. Opt. Quantum Electron. 42, 887–897 (2011)CrossRefGoogle Scholar
  2. Abdel-Khalek, S., Berrada, K., Ooi, C.H.R.: Beam splitter entangler for nonlinear Bosonic fields. Laser Phys. 22, 1449–1454 (2012)ADSCrossRefGoogle Scholar
  3. Agarwal, G.S., Puri, R.R.: Cooperative behavior of atoms irradiated by broadband squeezed light. Phys. Rev. A 41, 3782 (1990)ADSCrossRefGoogle Scholar
  4. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  5. Berrada, K.: Protecting the precision of estimation in a photonic crystal. J. Opt. Soc. Am. B 32, 571–576 (2015)ADSCrossRefGoogle Scholar
  6. Berrada, K., Aldaghri, O.: Quantum measurements in spin-boson model under non-Markovian environment. Physica E: Low-dimens. Syst. Nanostruct. 91, 173–177 (2017)ADSCrossRefGoogle Scholar
  7. Berrada, K., Abdel-Khalek, S., Eleuch, H., Hassouni, Y.: Beam splitting and entanglement generation: excited coherent states. Quantum Inf. Process. 12, 69–82 (2013)ADSMathSciNetCrossRefGoogle Scholar
  8. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  9. Chiuri, A., et al.: Linear optics simulation of quantum non-Markovian dynamics. Sci. Rep. 2, 968 (2012)CrossRefGoogle Scholar
  10. Civitarese, O., Reboiro, M.: Atomic squeezing in three level atoms. Phys. Lett. A 357, 224–228 (2006)ADSCrossRefGoogle Scholar
  11. Civitarese, O., Reboiro, M., Rebón, L., Tielas, D.: Atomic squeezing in three-level atoms with effective dipole–dipole atomic interaction. Phys. Lett. A 374, 2117–2121 (2010)ADSCrossRefGoogle Scholar
  12. Cui, W., Xi, Z.R., Pan, Y.: Optimal decoherence control in non-Markovian open dissipative quantum systems. Phys. Rev. A 77, 032117 (2008)ADSCrossRefGoogle Scholar
  13. Demkowicz-Dobrzanski, R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113, 250801 (2014)ADSCrossRefGoogle Scholar
  14. Deveaud-Pledran, B., Quattropani, A., Schwendimann, P. (eds.): Quantum Coherence in Solid State Systems. IOS Press, Amsterdam (2009). ISBN 978-1-60750-039-1, vol. 171 of Proceedings of the International School of Physics Enrico FermiGoogle Scholar
  15. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)ADSCrossRefGoogle Scholar
  16. Drummond, P.D., Ficek, Z.: Quantum Squeezing. Springer, Berlin (2004)CrossRefGoogle Scholar
  17. El-Orany, F.A.A., Wahiddinb, M.R.B., Obada, A.S.F.: Single-atom entropy squeezing for two two-level atoms interacting with a single-mode radiation field. Opt. Commun. 281, 2854–2863 (2008)ADSCrossRefGoogle Scholar
  18. Fang, M.F., Zhou, P., Swain, S.: Entropy squeezing for a two-level atom. J. Mod. Opt. 47, 1043–1053 (2000)ADSMathSciNetCrossRefGoogle Scholar
  19. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)ADSCrossRefGoogle Scholar
  20. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)ADSCrossRefGoogle Scholar
  21. Haase, J.F., et al.: Controllable non-Markovianity for a spin qubit in diamond. Phys. Rev. Lett. 121, 060401 (2018)ADSCrossRefGoogle Scholar
  22. Huang, P., et al.: Observation of an anomalous decoherence effect in a quantum bath at room temperature. Nat. Commun. 2, 570 (2011)CrossRefGoogle Scholar
  23. Jha, P.K., Eleuch, H., Rostovtsev, Y.V.: Coherent control of atomic excitation using off-resonant strong few-cycle pulses. Phys. Rev. A 82, 045805 (2010)ADSCrossRefGoogle Scholar
  24. Kitagawa, M., Ueda, M.: Squeezed spin states. Phys. Rev. A 47, 5138 (1993)ADSCrossRefGoogle Scholar
  25. Kuzmich, A., Mølmer, K., Polzik, E.S.: Spin squeezing in an ensemble of atoms illuminated with squeezed light. Phys. Rev. Lett. 79, 4782 (1997)ADSCrossRefGoogle Scholar
  26. Lai, H.-L., Yang, P.-Y., Huang, Y.-W., Zhang, W.-M.: Exact master equation and non-Markovian decoherence dynamics of Majorana zero modes under gate-induced charge fluctuations. Phys. Rev. B 97, 054508 (2018)ADSCrossRefGoogle Scholar
  27. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987)ADSCrossRefGoogle Scholar
  28. Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)CrossRefGoogle Scholar
  29. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)ADSCrossRefGoogle Scholar
  30. Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)ADSCrossRefGoogle Scholar
  31. Maniscalco, S., Piilo, J., Intravaia, F., Petruccione, F., Messina, A.: Lindblad-and non-Lindblad-type dynamics of a quantum Brownian particle. Phys. Rev. A 70, 032113 (2004)ADSMathSciNetCrossRefGoogle Scholar
  32. Maniscalco, S., Olivares, S., Paris, M.G.A.: Entanglement oscillations in non-Markovian quantum channels. Phys Rev. A 75, 062119 (2007)ADSCrossRefGoogle Scholar
  33. Megier, N., Strunz, W.T., Viviescas, C., Luoma, K.: Parametrization and optimization of Gaussian non-Markovian unravelings for open quantum dynamics. Phys. Rev. Lett. 120, 150402 (2018)ADSMathSciNetCrossRefGoogle Scholar
  34. Pires, D.P., Celeri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015)ADSCrossRefGoogle Scholar
  35. Pollock, F.A., Rodriguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Non-Markovian quantum processes: complete framework and efficient characterization. Phys. Rev. A 97, (201)012127 (2018)ADSCrossRefGoogle Scholar
  36. Popovic, M., Vacchini, B., Campbell, S.: Entropy production and correlations in a controlled non-Markovian setting. Phys. Rev. A 98, 012130 (2018)ADSCrossRefGoogle Scholar
  37. Poulsen, U.V., Molmer, K.: Squeezed light from spin-squeezed atoms. Phys. Rev. Lett. 87, 123601 (2001)ADSCrossRefGoogle Scholar
  38. Raja, S.H., Borrelli, M., Schmidt, R., Pekola, J.P., Maniscalco, S.: Thermodynamic fingerprints of non-Markovianity in a system of coupled superconducting qubits. Phys. Rev. A 97, 032133 (2018)ADSCrossRefGoogle Scholar
  39. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. Robert, S.: Whitney, non-Markovian quantum thermodynamics: laws and fluctuation theorems. Phys. Rev. B 98, 085415 (2018)CrossRefGoogle Scholar
  41. Rojo, A.G.: Optimally squeezed spin states. Phys. Rev. A 68, 013807 (2003)ADSCrossRefGoogle Scholar
  42. Sánchez-Ruiz, J.: Improved bounds in the entropic uncertainty and certainty relations for complementary observables. Phys. Lett. A 201, 125–131 (1995)ADSMathSciNetCrossRefGoogle Scholar
  43. Schindler, P., et al.: Quantum simulation of dynamical maps with trapped ions. Nat. Phys. 9, 361 (2013)CrossRefGoogle Scholar
  44. Sete, E.A., Svidzinsky, A.A., Rostovtsev, Y.V., Eleuch, H., Jha, P.K., Suckewer, S., Scully, M.O.: Using quantum coherence to generate gain in the XUV and X-ray: gain-swept superradiance and lasing without inversion. IEEE J. Sel. Top. Quantum Electron. 18, 541–553 (2002)ADSCrossRefGoogle Scholar
  45. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  46. Tamascelli, D., Smirne, A., Huelga, S.F., Plenio, M.B.: Nonperturbative treatment of non-Markovian dynamics of open quantum systems. Phys. Rev. Lett. 120, 030402 (2018)ADSCrossRefGoogle Scholar
  47. Thomas, G., Siddharth, N., Banerjee, S., Ghosh, S.: Thermodynamics of non-Markovian reservoirs and heat engines. Phys. Rev. E 97, 062108 (2018)ADSCrossRefGoogle Scholar
  48. Torre, G., Illuminati, F.: Exact non-Markovian dynamics of Gaussian quantum channels: finite-time and asymptotic regimes. Pys. Rev A 98, 012124 (2018)ADSGoogle Scholar
  49. Wang, X.: Spin squeezing in nonlinear spin-coherent states. J. Opt. B: Quantum Semiclass. Opt. 3, 93 (2001)ADSCrossRefGoogle Scholar
  50. Wang, X., Sanders, B.C.: Relations between bosonic quadrature squeezing and atomic spin squeezing. Phys. Rev. A 68, 033821 (2003)ADSCrossRefGoogle Scholar
  51. Weiss, U.: Quantum Dissipative System. World Scientific Publishing, Singapore (1993)CrossRefGoogle Scholar
  52. Wodkiewicz, K.: Reduced quantum fluctuations in the Josephson junction. Phys. Rev. B 32, 4750 (1985)ADSCrossRefGoogle Scholar
  53. Yukalov, V.I., Yukalova, E.P.: Atomic squeezing under collective emission. Phys. Rev. A 70, 053828 (2004)ADSCrossRefGoogle Scholar
  54. Zhang, J., Wu, R.B., Li, C.W., Tarn, T.J., Wu, J.W.: Asymptotically noise decoupling for Markovian open quantum systems. Phys. Rev. A 75, 022324 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceAl Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  2. 2.The Abdus Salam International Centre for Theoretical PhysicsMiramare-TriesteItaly

Personalised recommendations