Advertisement

Highly sensitive SPR PCF biosensors based on Ag/TiN and Ag/ZrN configurations

  • Ahmed H. El-Saeed
  • Ahmed E. Khalil
  • Mohamed Farhat O. HameedEmail author
  • Mohammad Y. Azab
  • S. S. A. ObayyaEmail author
Article
  • 12 Downloads
Part of the following topical collections:
  1. 2018 - Optical Wave and Waveguide Theory and Numerical Modelling

Abstract

We numerically present and analyze a surface plasmon resonance (SPR) bimetallic photonic crystal fiber (PCF) biosensor using full vectorial finite element method. The bimetallic configuration is based on Silver and (TiN or ZrN) as alternative plasmonic materials. The reported design relies on PCF with an external channel to house the analyte. The inner surface of the channel is coated by a silver layer followed by TiN or ZrN to protect the silver layer from oxidation. The proposed biosensor can be implemented to detect the unknown analytes, organic chemicals, biological analytes, and biomolecules via the sensitive resonant peaks to the analyte refractive index variations for both polarized modes with high linearity. In this study, a comparison is made between the Ag/TiN configuration and the Ag/ZrN counterpart in terms of sensitivity, losses, and linearity. The geometrical parameters are optimized to achieve high refractive index sensitivities of 7000 nm/RIU for quasi-transverse electric (TE) mode and 6900 nm/RIU for quasi-transverse magnetic (TM) mode, respectively for the Ag/TiN configuration. However, the quasi TE and quasi TM modes achieve high sensitivity of 5300 and 5400 nm/RIU, respectively using the Ag/ZrN configuration. The standard PCF fabrication technologies can be used to fabricate the proposed SPR PCF biosensors.

Keywords

Photonic crystal fibers Optical sensing Alternative plasmonic material Titanium nitride Zirconium nitride Surface plasmon resonance 

Notes

References

  1. Akowuah, E.K., Gorman, T., Ademgil, H., Haxha, S.: A highly sensitive photonic crystal fibre (PCF) surface plasmon resonance (SPR) sensor based on a bimetallic structure of gold and silver. In: IEEE 4th International Conference on Adaptive Science & Technology (ICAST), pp. 121–125 (2012a)Google Scholar
  2. Akowuah, E.K., Gorman, T., Ademgil, H.: Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48, 1403–1410 (2012b)ADSCrossRefGoogle Scholar
  3. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 865 (2010).  https://doi.org/10.1038/nmat2866 ADSCrossRefGoogle Scholar
  4. Azab, M.Y., Hameed, M.F.O., Nasr, A.M., Obayya, S.S.A.: Label free detection for DNA hybridization using surface plasmon photonic crystal fiber biosensor. Opt. Quantum Electron. 50, 1–13 (2018).  https://doi.org/10.1007/s11082-017-1302-2 CrossRefGoogle Scholar
  5. Azzam, S.I., Hameed, M.F.O.: Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quantum Electron. 48, 1–11 (2016).  https://doi.org/10.1007/s11082-016-0414-4 CrossRefGoogle Scholar
  6. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994).  https://doi.org/10.1006/jcph.1994.1159 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. Bise, R.T., Trevor, D.J.: Sol-gel derived microstructured fiber: fabrication and characterization. In: OFC/NFOEC Technical Digest Optical Fiber Communication Conference 2005. 3, 11–13 (2005).  https://doi.org/10.1109/ofc.2005.192772
  8. Boltasseva, A., Shalaev, V.M.: All that glitters need not be gold. Science 347, 1308–1310 (2015).  https://doi.org/10.1126/science.aaa8282 ADSCrossRefGoogle Scholar
  9. COMSOL Multiphysics Software, http://www.comsol.com. Accessed 1 June 2018
  10. Dash, J.N., Jha, R.: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. Photonics Technol. Lett. IEEE. 26, 1092–1095 (2014a)ADSCrossRefGoogle Scholar
  11. Dash, J.N., Jha, R.: SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 26, 595–598 (2014b).  https://doi.org/10.1109/LPT.2014.2301153 ADSCrossRefGoogle Scholar
  12. El-Saeed, A.H., Allam, N.K.: Refractory plasmonics: orientation-dependent plasmonic coupling in TiN and ZrN nanocubes. Phys. Chem. Chem. Phys. 20, 1881–1888 (2018).  https://doi.org/10.1039/c7cp04933a CrossRefGoogle Scholar
  13. Falkenstein, P., Justus, B.L.: Fused array preform fabrication of holey optical fibers, Google Patents (2013)Google Scholar
  14. Gobin, A.M., Lee, M.H., Halas, N.J., James, W.D., Drezek, R.A., West, J.L.: Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7, 1929–1934 (2007).  https://doi.org/10.1021/nl070610y ADSCrossRefGoogle Scholar
  15. Hameed, M.F.O., Obayya, S.S.A., Al-Begain, K., el Maaty, M., Nasr, A.M.: Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber. J. Lightwave Technol. 27, 4754–4762 (2009)ADSCrossRefGoogle Scholar
  16. Hameed, M.F.O., Obayya, S.S.A., Wiltshire, R.J.: Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers. IEEE Photonics Technol. Lett. 22(3), 188–190 (2010)ADSCrossRefGoogle Scholar
  17. Hameed, M.F.O., Obayya, S.S.A., Wiltshire, R.J.: Multiplexer–demultiplexer based on nematic liquid crystal photonic crystal fiber coupler. J. Lightwave Technol. 31(1), 81–86 (2013a)ADSCrossRefGoogle Scholar
  18. Hameed, M.F.O., Abdelrazzak, M., Obayya, S.S.A.: Novel design of ultra-compact triangular lattice silica photonic crystal polarization converter. J. Lightwave Technol. 31(1), 81–86 (2013b)ADSCrossRefGoogle Scholar
  19. Hameed, M.F.O., Alrayk, Y.K.A., Shaalan, A.A., El Deeb, W.S., Obayya, S.S.A.: Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophotonics 10(4), 046016 (2016)ADSCrossRefGoogle Scholar
  20. Hameed, M.F.O., Saadeldin, A.S., Elkaramany, E.M.A., Obayya, S.S.A.: Label-free highly sensitive hybrid plasmonic biosensor for the detection of DNA hybridization. J. Lightwave Technol. 35(22), 4851–4858 (2017).  https://doi.org/10.1109/jlt.2017.2733720 ADSCrossRefGoogle Scholar
  21. Harrington, J.A.: A review of IR transmitting, hollow waveguides. Fiber Integr. Opt. 19, 211–227 (2000)ADSCrossRefGoogle Scholar
  22. Hassani, A., Skorobogatiy, M.: Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 14, 11616–11621 (2006)ADSCrossRefGoogle Scholar
  23. Hassani, A., Skorobogatiy, M.: Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J. Opt. Soc. Am. B. 24, 1423–1429 (2007)ADSCrossRefGoogle Scholar
  24. Hautakorpi, M., Mattinen, M., Ludvigsen, H.: Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express 16, 8427–8432 (2008).  https://doi.org/10.1364/OE.16.008427 ADSCrossRefGoogle Scholar
  25. Heikal, A.M., Hameed, M.F.O., Obayya, S.S.A.: Improved trenched channel plasmonic waveguide. J. Lightwave Technol. 31(13), 2184–2191 (2013)ADSCrossRefGoogle Scholar
  26. Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54, 3–15 (1999).  https://doi.org/10.1016/S0925-4005(98)00321-9 CrossRefGoogle Scholar
  27. Hussein, M., Hameed, M.F.O., Obayya, S.S.A., Swillam, M.A.: Effective modelling of silicon nanowire solar cells. In: 2017 International Applied Computational Electromagnetics Society Symposium—Italy, ACES 2017-7916023 (2017)Google Scholar
  28. Hu, D.J.J., Ho, H.P.: Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv. Opt. Photonics. 9, 257–314 (2017)ADSCrossRefGoogle Scholar
  29. Khalil, A.E., El-Saeed, A.H., Ibrahim, M.A., Hashish, M.E., Abdelmonem, M.R., Hameed, M.F.O., Azab, M.Y., Obayya, S.S.A.: Highly sensitive photonic crystal fiber biosensor based on titanium nitride. Opt. Quantum Electron. 50, 158 (2018a).  https://doi.org/10.1007/s11082-018-1397-0 CrossRefGoogle Scholar
  30. Khalil, A.E., El-Saeed, A.H., Ibrahim, M.A., Hashish, M.E., Abdelmonem, M.R., Hameed, M.F.O., Azab, M.Y., Obayya, S.S.A.: Highly Sensitive Photonic Crystal Fiber Biosensor Based on Alternative Plasmonic Material. SPIE Photonics Europe, Strasbourg Convention & Exhibition Centre, Strasbourg (2018b)Google Scholar
  31. Liu, C., Wang, F., Lv, J., Sun, T., Liu, Q., Fu, C., Mu, H., Chu, P.K.: A highly temperature-sensitive photonic crystal fi ber based on surface plasmon resonance Gold film. Opt. Commun. 359, 378–382 (2016).  https://doi.org/10.1016/j.optcom.2015.09.108 ADSCrossRefGoogle Scholar
  32. Liu, C., Yang, L., Su, W., Wang, F., Sun, T., Liu, Q., Mu, H., Chu, P.K.: Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt. Commun. 382, 162–166 (2017).  https://doi.org/10.1016/j.optcom.2016.07.031 ADSCrossRefGoogle Scholar
  33. Liu, S., Jin, L., Jin, W., Wang, D., Liao, C., Wang, Y.: Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser. Opt. Express 18, 5496–5503 (2010)ADSCrossRefGoogle Scholar
  34. Luan, N., Wang, R., Lv, W., Yao, J.: Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt. Express 23, 8576–8582 (2015).  https://doi.org/10.1364/OE.23.008576 ADSCrossRefGoogle Scholar
  35. Maier, S.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)CrossRefGoogle Scholar
  36. Maier, S.A., Atwater, H.A.: Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 1–10 (2005).  https://doi.org/10.1063/1.1951057 CrossRefGoogle Scholar
  37. Mahmoud, K.R., Hussein, M., Hameed, M.F.O., Obayya, S.S.A.: Super directive Yagi-Uda nanoantennas with an ellipsoid reflector for optimal radiation emission. J. Opt. Soc. Am. B 34, 2041–2049 (2017)ADSCrossRefGoogle Scholar
  38. Momota, M.R., Hasan, M.R.: Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater. 76, 287–294 (2018). (ISSN 0925-3467) ADSCrossRefGoogle Scholar
  39. Naik, G.V., Shalaev, V.M., Boltasseva, A.: Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).  https://doi.org/10.1002/adma.201205076 CrossRefGoogle Scholar
  40. Otupiri, R., Akowuah, E.K., Haxha, S., Ademgil, H., AbdelMalek, F., Aggoun, A.: A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J. 6, 1–11 (2014).  https://doi.org/10.1109/JPHOT.2014.2335716 CrossRefGoogle Scholar
  41. Otupiri, R., Akowuah, E.K., Haxha, S.: Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications. Opt. Express 23, 15716–15727 (2015).  https://doi.org/10.1364/OE.23.015716 ADSCrossRefGoogle Scholar
  42. Patsalas, P., Kalfagiannis, N., Kassavetis, S.: Optical properties and plasmonic performance of titanium nitride. Materials (Basel) 8, 3128–3154 (2015).  https://doi.org/10.3390/ma8063128 ADSCrossRefGoogle Scholar
  43. Peng, L., Shi, F., Zhou, G., Ge, S., Hou, Z., Xia, C.: A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice. IEEE Photonics J. 7, 1–9 (2015).  https://doi.org/10.1109/jphot.2015.2488278 CrossRefGoogle Scholar
  44. Rifat, A.A., Mahdiraji, G.A., Sua, Y.M., Shee, Y.G., Ahmed, R., Chow, D.M., Adikan, F.R.M.: Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photonics Technol. Lett. 27, 1628–1631 (2015).  https://doi.org/10.1109/LPT.2015.2432812 ADSCrossRefGoogle Scholar
  45. Rifat, A.A., Mahdiraji, G.A., Ahmed, R., Chow, D.M., Sua, Y.M., Shee, Y.G., Adikan, F.R.M.: Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics J. 8, 1–8 (2016).  https://doi.org/10.1109/jphot.2015.2510632 CrossRefGoogle Scholar
  46. Rifat, A.A., Haider, F., Ahmed, R., Mahdiraji, G.A., Adikan, F.R.M., Miroshnichenko, A.E.: Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt. Lett. 43, 891–894 (2018)ADSCrossRefGoogle Scholar
  47. Russell, P.: Photonic crystal fibers. Science 299, 358–362 (2003)ADSCrossRefGoogle Scholar
  48. Sharma, A.K., Gupta, B.D.: Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection. Opt. Fiber Technol. 12, 87–100 (2006).  https://doi.org/10.1016/j.yofte.2005.07.001 ADSCrossRefGoogle Scholar
  49. Sokolov, K., Follen, M., Aaron, J., Pavlova, I., Malpica, A., Lotan, R., Richards-kortum, R.: Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999–2004 (2004)Google Scholar
  50. Takeyasu, N., Tanaka, T., Kawata, S.: Metal deposition deep into microstructure by electroless plating. Jpn. J. Appl. Phys. 44, L1134–L1137 (2005)ADSCrossRefGoogle Scholar
  51. Wang, F., Sun, Z., Liu, C., Sun, T., Chu, P.K.: A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics 12, 1847–1853 (2016).  https://doi.org/10.1007/s11468-016-0453-5 CrossRefGoogle Scholar
  52. Wei, Q., Shu-Guang, L., Jian-Rong, X., Xü-Jun, X., Lei, Z.: Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications. Chin. Phys. B 22, 74213 (2013).  https://doi.org/10.1088/1674-1056/22/7/074213.CrossRefGoogle Scholar
  53. Wu, T., Shao, Y., Wang, Y., Cao, S., Cao, W., Zhang, F., Liao, C., He, J., Huang, Y., Hou, M., Wang, Y.: Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express 25, 20313–20322 (2017)ADSCrossRefGoogle Scholar
  54. Yang, X., Lu, Y., Liu, B., Yao, J.: Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12, 489–496 (2017).  https://doi.org/10.1007/s11468-016-0289-z CrossRefGoogle Scholar
  55. Younis, B.M., Heikal, A.M., Hameed, M.F.O., Obayya, S.S.A.: Highly wavelength-selective asymmetric dual-core liquid photonic crystal fiber polarization splitter. J. Opt. Soc. Am. B Opt. Phys. 35, 1020–1029 (2018).  https://doi.org/10.1016/j.tree.2008.04.010 ADSCrossRefGoogle Scholar
  56. Zhou, C.: Theoretical analysis of double-microfluidic-channels photonic crystal fiber sensor based on silver nanowires. Opt. Commun. 288, 42–46 (2013).  https://doi.org/10.1016/j.optcom.2012.09.060 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ahmed H. El-Saeed
    • 1
  • Ahmed E. Khalil
    • 1
  • Mohamed Farhat O. Hameed
    • 1
    • 2
    • 3
    Email author
  • Mohammad Y. Azab
    • 3
  • S. S. A. Obayya
    • 1
    • 3
    Email author
  1. 1.Centre for Photonics and Smart MaterialsZewail City of Science and TechnologyGizaEgypt
  2. 2.Nanotechnology Engineering ProgramUniversity of Science and Technology, Zewail City of Science and TechnologyGizaEgypt
  3. 3.Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations