The visible laser absorption property of chromium-doped polyvinyl alcohol films: synthesis, optical and dielectric properties

  • H. Elhosiny AliEmail author
  • Yasmin Khairy
  • H. Algarni
  • H. I. Elsaeedy
  • A. M. Alshehri
  • H. Alkharis
  • I. S. Yahia


New films for visible laser filter were fabricated from poly(vinyl alcohol), PVA, and various levels of chrome(III) chloride, CrCl3, by a known simple process named casting. The structure order degree, complex interaction, as well as optical filtering characteristic of the PVA + xCrCl3 (x = 0.037, 0.37, 3.7, 18.5 and 37 wt%) samples were investigated via the diffraction of the X-ray, Fourier transform infrared spectroscopy and UV/Vis/NIR spectrum, respectively, while the behavior of optical limiting was tested by set-up laser limiting measurement. The increment of Cr3+-doping level in the PVA gives some results as, (I) a marked increase in the degree of random structure of the samples, and (II) two clearly absorption peaks are seen around 428 nm and 608 nm with a progressive increase in the intensity and a slight shift to a higher wavelength. (III) Three distinguished energy gaps were clearly observed, as well as, (IV) the dielectric spectroscopy of the samples was decreased with increasing the Cr3+-doping, which contributes to the strong interaction among the mixtures. Furthermore, at concentrations above 0.37 wt% of Cr3+-doping, a notable decrease in the output detected laser power was observed.


Cr3+-doped PVA XRD/FTIR Energy gap Optical properties Optical filter 



The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the group’s research program under Grant No. R.G.P.2/13/39.


  1. Abutalib, M.M., Yahia, I.S.: Selective CUT-OFF laser filters using brilliant green-doped PMMA polymeric composite films: sensing approach. J. Mater. Sci. Mater. Electron. 29, 19798–19804 (2018)CrossRefGoogle Scholar
  2. Ahmed, M.B., Fatehi, A., Zakaria, A., Mahmud, S., Mohammmadi, S.A.: Fabrication of an electrically-resistive, varistor–polymer composite. Int. J. Mol. Sci. 13, 15640–15652 (2012)CrossRefGoogle Scholar
  3. Albu, A.-M., Maior, I., Nicolae, C.A., Bocăneală, F.L.: Novel PVA proton conducting membranes doped with polyaniline generated by in situ polymerization. Electrochim. Acta 211, 911–917 (2016)CrossRefGoogle Scholar
  4. Ali, F.M., Ashraf, I.M., Alqahtani, S.M.: Promising Cu-doped polyvinyl alcohol films for optical and photoconductive applications. Physica B 527, 24–29 (2017)ADSCrossRefGoogle Scholar
  5. Ali, H.E., Khairy, Y., Algarni, H., Elsaeedy, H.I., Alshehri, A.M., Yahia, I.S.: Optical spectroscopy and electrical analysis of La3+-doped PVA composite films for varistor and optoelectronic applications. J. Mater. Sci. Mater. Electron. 29, 20424–20432 (2018)CrossRefGoogle Scholar
  6. Assiri, M.A., Manthrammel, M.A., Aboraia, A.M., Yahia, I.S., Zahran, H.Y., Ganesh, V., Shkir, M., AlFaify, S., Soldatov, A.V.: Kramers–Kronig calculations for linear and nonlinear optics of nanostructured methyl violet (CI-42535): new trend in laser power attenuation using dyes. Phys. B Conden. Matter 552, 62–70 (2019)ADSCrossRefGoogle Scholar
  7. Aziza, S.B.: Poly(vinyl alcohol) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J. Elect. Mater. 45, 736–745 (2016)ADSCrossRefGoogle Scholar
  8. Aziza, S.B., Rasheed, M.A., Hussein, A.M., Ahmed, H.M.: Fabrication of polymer blend composites based on [PVA–PVP](1−x):(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: structural and optical properties. Mater. Sci. Semi. Process. 71, 197–203 (2017)CrossRefGoogle Scholar
  9. Bhavani, S., Pavani, Y., Ravi, M., Kumar, K.K., Rao, V.V.R.N.: Structural and electrical properties of pure and NiCl2 doped PVA polymer electrolytes. Am. J. Polym. Sci. 3(3), 56–62 (2013)Google Scholar
  10. Cassano, A., Pietra, L.D., Drioli, E.: Integrated membrane process for the recivery of chromium salts from tannery effluents. Ind. Eng. Chem. Res. 46, 6825–6830 (2007)CrossRefGoogle Scholar
  11. Chahal, R.P., Mahendia, S., Tomar, A.K., Kumar, S.: γ-Irradiated PVA/Ag nanocomposite films: materials for optical applications. J. Alloys Compd. 538, 212–219 (2012)CrossRefGoogle Scholar
  12. El-Sayed, S., Abdel-Baset, T.A., Hassen, A.: Dielectric properties of PVDF thin films doped with 3 wt% of RCl3 (R = Gd or Er). AIP Adv. 4, 037114(1–15) (2014)ADSCrossRefGoogle Scholar
  13. Hemalatha, K.S., Rukmani, K., Suriyamurthy, N., Nagabhushana, B.M.: Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: a composition dependent study. Mater. Res. Bull. 51, 438–446 (2014)CrossRefGoogle Scholar
  14. Hirankumar, G., Selvasekarapandian, S., Kuwata, N., Kawamura, J., Hattori, T.: Thermal, electrical and optical studies on the poly(vinyl alcohol) based polymer electrolytes. J. Power Source 144, 262–267 (2005)ADSCrossRefGoogle Scholar
  15. Koper, G., Borkovec, M.: Binding of metal ions to polyelectrolytes and their oligomeric counterparts: an application of a generalized potts model. J. Phys. Chem. B 105(28), 6666–6674 (2001)CrossRefGoogle Scholar
  16. Kramadhati, S., Thyagarajan, K.: Optical properties of pure and doped (KNO3 and MgCl2) polyvinyl alcohol polymer thin films. Int. J. Eng. Res. Dev. 6, 15–18 (2013)Google Scholar
  17. Krumova, M., López, D., Benavente, R., Mijangos, C., Perenã, J.M.: Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). J. Polym. 41, 9265–9272 (2000)CrossRefGoogle Scholar
  18. Kulshrestha, N., Chatterjee, B., Gupta, P.N.: Characterization and electrical properties of polyvinyl alcohol based polymer electrolyte films doped with ammonium thiocyanate. Mater. Sci. Eng. B Solid. Stat. Mater. Adv. Technol. 184, 49–57 (2014)CrossRefGoogle Scholar
  19. Kumar, N.B.R., Crasta, V., Bhajantri, R.F., Praveen, B.M.: Microstructural and mechanical studies of PVA doped with ZnO and WO3 composites films. J. Polym. 846140, 1–7 (2014)Google Scholar
  20. Kumar, K.N., Padma, R., Rao, J.L., Kang, M.: Dazzling green emission from graphene oxide nanosheet-embedded co-doped Ce3+ and Tb3+: PVA polymer nanocomposites for photonic applications. RSC Adv. 6, 54525–54538 (2016)CrossRefGoogle Scholar
  21. Lin, C.-C., Lee, W.S., Sun, C.-C., Whu, W.-H.: A varistor–polymer composite with nonlinear electrical-thermal switching properties. Ceram. Int. 34, 131–136 (2008)CrossRefGoogle Scholar
  22. Luo, Y., Jiang, X., Zhang, W., Li, X.: Effect of aluminium nitrate hydrate on the crystalline, thermal and mechanical properties of poly(vinyl alcohol) film. Polym. Polym. Compos. 23, 555–561 (2015)Google Scholar
  23. Mohammed, M.I., Yahia, I.S.: Synthesis and optical properties of basic fuchsin dye-doped PMMA polymeric films for laser applications: wide scale absorption band. Opt. Quant. Electron. 50, 159(1–8) (2018)CrossRefGoogle Scholar
  24. Mohsen-Nia, M., Doulabi, F.S.M.: PVAc microspheres via semicontinuous emulsion polymerization: synthesis, characterization, kinetic, and surface morphology studies. J. Adhes. 87, 1020–1037 (2011)CrossRefGoogle Scholar
  25. Mott, N.F., Davis, N.F.: Electronic process in non-crystalline materials. Oxford University Press, Oxford (1979)Google Scholar
  26. Prajapati, G.K., Gupta, P.N.: Nuclear instruments and methods in physics research, “Conduction mechanism in un-irradiated and γ-irradiated PVA-H3PO4 polymer electrolytes”. Section B 267, 3328–3332 (2009)Google Scholar
  27. Rajeswari, N., Selvasekarapandian, S., Karthikeyan, S., Sanjeeviraja, C., Iwai, Y., Kawamura, J.: Structural, vibrational, thermal, and electrical properties of PVA/PVP biodegradable polymer blend electrolyte with CH3COONH4. Ionics 19, 1105–1113 (2013)CrossRefGoogle Scholar
  28. Rajeswari, N., Selvasekarapandian, S., Sanjeeviraja, C., Kawamura, J., Bahadur, S.A.: A study on polymer blend electrolyte based on PVA/PVP with proton salt. Polym. Bull. 71, 1061–1080 (2014)CrossRefGoogle Scholar
  29. Reddy, M.O., Babu, B.C.: Structural, optical, electrical, and magnetic properties of PVA:Gd3+ and PVA:Ho3+ polymer films. India J. Mater. Sci. 2015, 927364(1–8) (2015)Google Scholar
  30. Salman, S.A., Bakr, N.A., Jwameer, M.R.: Effect of annealing on the optical properties of (PVA–CuCl) composites. Int. Lett. Chem. Phys. Astron. 63, 98–105 (2016)CrossRefGoogle Scholar
  31. Sengwa, R.J., Choudhary, S.: Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 131, 40617–40628 (2014)CrossRefGoogle Scholar
  32. Shkir, M., Khan, M.T., Ganesh, V., Yahia, I.S., Haq, B., Almohammedi, A., Patil, P.S., Maidur, S.R., AlFaify, S.: Influence of Dye doping on key linear, nonlinear and optical limiting characteristics of SnO2 films for optoelectronic and laser applications. Opt. Laser Technol. 108, 609–618 (2018)ADSCrossRefGoogle Scholar
  33. Tabatabaee, M., Sharif, M.A., Vakili, F., Saheli, S.: Hydrothermal synthesis and structural studies of a new coordination polymer of lanthanum(III) with benzene-1,2,4,5-tetracarboxylic acid and 4,4ʹ-bipyridine. J. Rare Earth 27, 356–361 (2009)CrossRefGoogle Scholar
  34. Tataroglu, A., Altındal, S., Bulbul, M.M.: Temperature and frequency dependent electrical and dielectric properties of Al/SiO2/p-Si (MOS) structure. Microelectron. Eng. 81, 140–149 (2005)CrossRefGoogle Scholar
  35. Tunc, T., Altındal, Ş., Dökme, İ., Uslu, H.: Anomalous peak in the forward-bias C–V plot and temperature-dependent behavior of Au/PVA (Ni, Zn-doped)/n-Si (111) structures. J. Electr. Mater. 40, 157–164 (2011)ADSCrossRefGoogle Scholar
  36. Vroman, I., Tighzert, L.: Biodegradable polymers. Materials 2, 307–344 (2009)ADSCrossRefGoogle Scholar
  37. Yahia, I.S., Keshk, S.: Preparation and characterization of PVA/Congo red polymeric composite films for a wide scale laser filters. Opt. Laser Technol. 90, 197–200 (2017)ADSCrossRefGoogle Scholar
  38. Yahia, I.S., Bouzidi, A., Zahran, H.Y., Jilani, W., AlFaify, S., Algarni, H., Guermazi, H.: Design of smart optical sensor using polyvinyl alcohol/Fluorescein sodium salt: laser filters and optical limiting effect. J. Mol. Struct. 1156, 492–500 (2018)ADSCrossRefGoogle Scholar
  39. Zhao, L.-M., Shao, X., Yin, Y.-B., Li, W.-Z.: Binding of terbium complex to polymerizable hybrid materials constructed from molecular assembly and its optical properties. Mater. Res. Bull. 44, 1334–1338 (2009)CrossRefGoogle Scholar
  40. Zidan, H.M., Abu-Elnader, M.: Structural and optical properties of pure PMMA and metal chloride-doped pmma films. Physica B 355, 308–317 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • H. Elhosiny Ali
    • 1
    • 2
    Email author
  • Yasmin Khairy
    • 2
  • H. Algarni
    • 1
  • H. I. Elsaeedy
    • 1
  • A. M. Alshehri
    • 1
  • H. Alkharis
    • 1
  • I. S. Yahia
    • 1
    • 3
  1. 1.Advanced Functional Materials and Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceZagazig UniversityZagazigEgypt
  3. 3.Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Laboratory, Physics Department, Faculty of EducationAin Shams UniversityRoxy, CairoEgypt

Personalised recommendations