Advertisement

Low-PAPR interleaved single-carrier FDM scheme for optical wireless communications

  • Tiantian Zhang
  • Ji Zhou
  • Zhenshan Zhang
  • Yueming Lu
  • Fei Su
  • Yaojun QiaoEmail author
Article
  • 19 Downloads

Abstract

As a potential complementary access technology for the 5G wireless systems, optical wireless communication (OWC) gains extensive attention for decades owing to its numerous advantages of broad license-free spectrum, immunity to electromagnetic interference and high-level privacy. However, two rigorous obstacles to achieve high data-rate OWC transmission are the severe nonlinear clipping of transmitter and high-frequency attenuation of OWC system. In this paper, we propose the first interleaved single-carrier frequency-division multiplexing (I-SC-FDM) scheme for OWC systems. Compared with orthogonal frequency-division multiplexing (OFDM), I-SC-FDM has a lower peak-to-average power ratio, which makes it more immune to the nonlinearity clipping in OWC systems. Meanwhile, for the bandwidth-limited OWC systems, I-SC-FDM has better performance on resistance to the serious high-frequency distortion. The simulation results indicate that, under the transmitter nonlinearity and optical-wireless diffuse fading channel, the maximum \(Q^2\) of I-SC-FDM is about 3.44 dB and 3.14 dB higher than that of OFDM when 4-ary quadrature amplitude modulation (4-QAM) and 16-QAM are modulated, respectively. The results show the feasibility and advantages of I-SC-FDM for cost-sensitive OWC systems.

Keywords

Optical wireless communication Light emitting diode Orthogonal frequency-division multiplexing Peak-to-average power ratio Interleaved single-carrier frequency-division multiplexing 

Notes

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (61771062, 61427813), in part by National Key R&D Program (2016YFB0800302) and in part by Fund of State Key Laboratory of IPOC (BUPT) (No. IPOC2018ZT08), P. R. China.

References

  1. Agyapong, P.K., Iwamura, M., Staehle, D., Kiess, W., Benjebbour, A.: Design considerations for a 5G network architecture. IEEE Commun. Mag. 52(11), 65–75 (2014)CrossRefGoogle Scholar
  2. Buzzi, S., Chih-Lin, I., Klein, T.E., Poor, H.V., Yang, C., Zappone, A.: A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE J. Sel. Areas Commun. 34(4), 697–709 (2016)CrossRefGoogle Scholar
  3. Carruthers, J.B., Kahn, J.M.: Modeling of nondirected wireless infrared channels. IEEE Trans. Commun. 45(10), 1260–1268 (1997)CrossRefGoogle Scholar
  4. Chi, N., Zhou, Y., Shi, J., Wang, Y., Huang, X.: Enabling technologies for high speed visible light communication. In: Proceedings of the Optical Fiber Communications Conference paper, p. Th1E. 3. Los Angeles (2017)Google Scholar
  5. Dimitrov, S., Sinanovic, S., Haas, H.: Clipping noise in OFDM-based optical wireless communication systems. IEEE Trans. Commun. 60(4), 1072–1081 (2012)CrossRefGoogle Scholar
  6. Ekstrom, H., Ekstrom, H., Furuskar, A., Karlsson, J., Meyer, M., Parkvall, S., Torsner, J., Wahlqvist, M.: Technical solutions for the 3G long-term evolution. IEEE Commun. Mag. 44(3), 38–45 (2006)CrossRefGoogle Scholar
  7. Elgala, H., Mesleh, R., Haas, H.: Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun. Mag. 49(9), 56–62 (2011)CrossRefGoogle Scholar
  8. Han, S.H., Lee, J.H.: An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Wirel. Commun. 12(2), 56–65 (2005)MathSciNetCrossRefGoogle Scholar
  9. Komine, T., Lee, J.H., Haruyama, S., Nakagawa, M.: Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment. IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009)CrossRefGoogle Scholar
  10. Koonen, T.: Indoor optical wireless systems: technology, trends and applications. J. Lightw. Technol. 36(8), 1459–1467 (2017)ADSCrossRefGoogle Scholar
  11. Lin, B., Tang, X., Yang, H., Ghassemlooy, Z., Zhang, S., Li, Y., Lin, C.: Experimental demonstration of IFDMA for uplink visible light communication. IEEE Photonics Technol. Lett. 28(20), 2218–2220 (2016)ADSCrossRefGoogle Scholar
  12. Mohammed, M.M.A., He, C., Armstrong, J.: Diversity combining in layered asymmetrically clipped optical OFDM. J. Lightw. Technol. 35(11), 2078–2085 (2017)ADSCrossRefGoogle Scholar
  13. Myung, H.G., Lim, J., Goodman, D.J.: Single carrier FDMA for uplink wireless transmission. IEEE Veh. Technol. Mag. 1(3), 30–38 (2006)CrossRefGoogle Scholar
  14. Shafik, R. A., Rahman, S., Islam, R.: On the extended relationships among EVM, BER and SNR as performance metrics. In: Proceedings of the ICECE, pp. 408–C411 (2006)Google Scholar
  15. Tsonev, D., Chun, H., Rajbhandari, S., McKendry, J.D., Videv, S., Gu, E., Haji, M., Watson, S., Kelly, A., Faulkner, G., Dawson, M., Haas, H., O’Brien, M.: A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride \(\mu {\rm LED}\). IEEE Photonics Technol. Lett. 267, 637–640 (2014)ADSCrossRefGoogle Scholar
  16. Wang, Y., Tao, L., Huang, X., Shi, J., Chi, N.: 8-Gb/s RGBY LED-Based WDM VLC system employing high-Order CAP modulation and hybrid post equalizer. IEEE Photonics J., 7(6), 1–7 (2015a) (Article no. 7904507) Google Scholar
  17. Wang, Q., Wang, Z., Dai, L.: Multiuser MIMO-OFDM for visible light communications. IEEE Photonics J., 7(6), 1−11 (2015b) (Article no. 7904911) Google Scholar
  18. Wang, J., Xu, Y., Ling, X., Zhang, R., Ding, Z., Zhao, C.: PAPR analysis for OFDM visible light communication. Opt. Express 24(24), 27457–27474 (2016)ADSCrossRefGoogle Scholar
  19. Wilson, S.K., Armstrong, J.: Transmitter and receiver methods for improving asymmetrically-clipped optical OFDM. IEEE Trans. Wirel. Commun. 8(9), 4561–4567 (2009)CrossRefGoogle Scholar
  20. Zhang, C., Li, J., Zhang, F., He, Y., Wu, H., Chen, Z.: Experimental demonstration of a single-carrier frequency division multiple address based PON (SCFDMA-PON) architecture. Opt. Express 18(24), 24556–24564 (2010)ADSCrossRefGoogle Scholar
  21. Zhang, H., Yuan, Y., Xu, W.: PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation. IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014)ADSCrossRefGoogle Scholar
  22. Zhang, T., Zhou, J., Zhang, Z., Qiao, Y., Su, F., Yang, A.: A performance improvement and cost-efficient ACO-OFDM scheme for visible light communications. Opt. Commun. 402, 199–205 (2017)ADSCrossRefGoogle Scholar
  23. Zhou, J., Qiao, Y.: Low-PAPR asymmetrically clipped optical OFDM for intensity-modulation/direct-detection systems. IEEE Photonics J., 7(3), 1–8 (2015) (Article no. 7101608) Google Scholar
  24. Zhou, J., Qiao, Y., Yu, J., Shi, J., Cheng, Q., Tang, X., Guo, M.: Interleaved single-carrier frequency-division multiplexing for optical interconnects. Opt. Express 25(9), 10586–10596 (2017a)ADSCrossRefGoogle Scholar
  25. Zhou, J., Yu, J., Cheng, Q., Shi, J., Guo, M., Tang, X., Qiao, Y.: 256-QAM interleaved single carrier FDM for short-reach optical interconnects. IEEE Photonics Technol. Lett. 29(21), 1796–1799 (2017b)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication EngineeringBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Department of Electronic Engineering, College of Information Science and TechnologyJinan UniversityGuangzhouChina
  3. 3.Key Laboratory of Trustworthy Distributed Computing and Service, Ministry of Education, School of Cyberspace SecurityBeijing University of Posts and TelecommunicationsBeijingChina
  4. 4.Multimedia Communication and Pattern Recognition Laboratory, School of Information and Communication EngineeringBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations