Comparative study of Cs,O coadsorption on Ga0.75Al0.25N (0001) and (001) surfaces

  • Mingzhu YangEmail author
  • Jing Guo
  • Zhanhui Liu
  • Xiaoqian Fu


Based on first principle calculations, we carried out comparative research of Cs,O coadsorption on Ga0.75Al0.25N (0001) surface and Ga0.75Al0.25N (001) (2 × 2) reconstruction surface. On the (0001) surface, the average coordinate difference between Cs and O atoms along [0001] direction is obviously smaller than that along [001] direction on (001) (2 × 2) reconstruction surface. This is due to the existence of dimers and trenches on the (001) (2 × 2) reconstruction surface. Cs atoms are favored to locate on the dimers while O atoms are favored to locate in the trenches. As a result, Cs–O dipoles on (001) (2 × 2) reconstruction surface make an important contribution on lowering work function. For both (0001) and (001) (2 × 2) reconstruction surface, work function values fluctuate up and down at the stage of Cs,O alternative adsorption, and the valley values are smaller and smaller. The site of Mg dopant has an influence on work function of the surfaces, which results in the “fish scale field” effect.


Ga0.75Al0.25N (0001) surface Ga0.75Al0.25N (001) (2 × 2) reconstruction surface Work function Cs–O dipole “Fish scale field” effect 



This study was funded by Natural Science Foundation of Jiangsu Province (Grant No. BK20170959), National Natural Science Foundation of China (Grant Nos. 61705108, 61704075 and 61601198), and the startup foundation for introducing talent of NUIST (Grant No. 2016r039). The authors acknowledge National Supercomputing Center in Shenzhen for providing the computational resources.


  1. Ainbund, M.R., Alekseev, A.N., Alymov, O.V., Jmerik, V.N., Lapushkina, L.V., Mizerov, A.M., Ivanov, S.V., Pashuk, A.V., Petrov, S.I.: Solar-blind UV photocathodes based on AlGaN heterostructures with a 300- to 330-nm spectral sensitivity threshold. Tech. Phys. Lett. 5, 439–442 (2012)ADSCrossRefGoogle Scholar
  2. Albanesi, E.A., Lambrecht, W.R.L., Segall, B.: Electronic structure and equilibrium properties of GaxAl1−xN alloys. Phys. Rev. B 48, 17841–17847 (1993)ADSCrossRefGoogle Scholar
  3. Brunner, D., Angerer, H., Bustarret, E., Freudenberg, F., Hopler, R., Dimitrov, R., Ambacher, O., Stutzmann, M.: Optical constants of epitaxial AlGaN films and their temperature dependence. J. Appl. Phys. 82, 5090–5096 (1997)ADSCrossRefGoogle Scholar
  4. Chen, X.L., Zhao, J., Chang, B.K., Jin, M.C., Hao, G.H., Xu, Y.: Blue-green reflection-mode GaAlAs photocathodes. Proc. SPIE 8555, 85550R01–85550R06 (2012)ADSGoogle Scholar
  5. Diao, Y., Liu, L., Xia, S., Kong, Y.: Cs/NF3 adsorption on [001]-oriented GaN nanowire surface: a first principle calculation. Superlattice. Microst. 111, 73–80 (2017)ADSCrossRefGoogle Scholar
  6. Diao, Y., Liu, L., Xia, S., Feng, S., Lu, F.: Surface sensitization mechanism on negative electron affinity p-GaN nanowires. Superlattice. Microst. 115, 140–153 (2018)ADSCrossRefGoogle Scholar
  7. Du, Y.J., Chang, B.K., Wang, H.G., Zhang, J.J., Wang, M.S.: Theoretical study of Cs adsorption on GaN (0001) surface. Appl. Surf. Sci. 258, 7425–7429 (2012)ADSCrossRefGoogle Scholar
  8. Fisher, D.G., Enstrom, R.E., Escher, J.S., Williams, B.F.: Photoelectron surface escape probability of (Ga,In)As: Cs–O in the 0.9 to 1.6 μm. J. Appl. Phys. 43, 3815–3823 (1972)ADSCrossRefGoogle Scholar
  9. Hao, G.H., Yang, M.Z., Chang, B.K., Chen, X.L., Zhang, J.J., Fu, X.Q.: Attenuation performance of reflection-mode AlGaN photocathode under different preparation. Appl. Opt. 52, 5671–5675 (2013)ADSCrossRefGoogle Scholar
  10. Hao, G.H., Chang, B.K., Shi, F., Zhang, J.J., Zhang, Y.J., Chen, X.L., Jin, M.C.: Influence of Al fraction on photoemission performance of AlGaN photocathode. Appl. Opt. 53, 3637–3641 (2014)ADSCrossRefGoogle Scholar
  11. Hogan, C., Paget, D., Garreau, Y., Sauvage, M., Onida, G., Reining, L., Chiaradia, P., Corradini, V.: Early stages of cesium adsorption on the As-rich c(2 × 8) reconstruction of GaAs (001): adsorption sites and Cs-induced chemical bonds. Phys. Rev. B 68, 2053131–20531311 (2003)Google Scholar
  12. Lei, T., Moustakas, T.D., Graham, R.J., He, Y., Berkowitz, S.J.: Epitaxial growth and characterization of zinc-blende gallium nitride on (001) silicon. J. Appl. Phys. 71, 4933–4943 (1992)ADSCrossRefGoogle Scholar
  13. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)ADSMathSciNetCrossRefGoogle Scholar
  14. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B. 23, 5048–5079 (1981)ADSCrossRefGoogle Scholar
  15. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  16. Reverchon, J.L., Mazzeo, G., Dussaigne, A., Duboz, J.Y.: Status of AlGaN based focal plane arrays for UV solar blind detection. Proc. SPIE 5964, 596420–596431 (2005)Google Scholar
  17. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2017–2044 (2002)Google Scholar
  18. Spicer, W.E., Herrera-Gõmez, A.: Modern theory and applications of photocathodes. Proc. SPIE 2022, 18–36 (1993)ADSCrossRefGoogle Scholar
  19. Sumiya, M., Kamo, Y., Ohashi, N., Takeguchi, M., Heo, Y.U., Yoshikawa, H., Ueda, S., Kobayashi, K., Nihashi, T., Hagino, M.: Others, fabrication and hard X-ray photoemission analysis of photocathodes with sharp solar-blind sensitivity using AlGaN films grown on Si substrates. Appl. Surf. Sci. 256, 4442–4446 (2010)ADSCrossRefGoogle Scholar
  20. Sun, L.H., Hu, J., Qin, H.W., Zhao, M., Kai, F.: Influences of Ca doping and oxygen vacancy upon adsorption of CO on the LaFeO3(010) surface: a first-principles study. J. Phys. Chem. 115, 5593–5598 (2011)CrossRefGoogle Scholar
  21. Turnbull, A.A., Evans, G.B.: Photoemission from GaAs–Cs–O. J. Phys. D Appl. Phys. 1, 155–160 (1968)ADSCrossRefGoogle Scholar
  22. Wang, X.H., Chang, B.K., Ren, L., Gao, P.: Influence of the p-type doping concentration on reflection-mode GaN photocathode. Appl. Phys. Lett. 98, 08210901–08210903 (2011)Google Scholar
  23. Xue, Z.Q.: Polycrystalline photoelectric emission films with negative electron affinity. Appl. Opt. 5, 251–255 (1984). (in Chinese) Google Scholar
  24. Yang, M.Z., Jin, M.C.: Photoemission of reflection-mode InGaAs photocathodes after Cs, O activation and recaesiations. Opt. Mater. 62, 499–504 (2016)ADSCrossRefGoogle Scholar
  25. Yang, M.Z., Chang, B.K., Hao, G.H., Guo, J., Wang, H.G., Wang, M.S.: Theoretical study on electronic structure and optical properties of Ga0.75Al0.25N (0001) surface. Appl. Surf. Sci. 273, 111–117 (2013a)CrossRefGoogle Scholar
  26. Yang, M.Z., Chang, B.K., Guo, J., Hao, G.H., Shi, F., Wang, H.G., Wang, M.S.: Theoretical study on optoelectronic properties of Ga0.75Al0.25N (001) reconstruction surfaces. Appl. Surf. Sci. 287, 1–7 (2013b)ADSCrossRefGoogle Scholar
  27. Yang, M.Z., Chang, B.K., Wang, M.S.: Atomic geometry and electronic structure of Al0.25Ga0.75N (0001) surfaces covered with different coverages of cesium: a first-principle research. Appl. Surf. Sci. 326, 251–256 (2015)ADSCrossRefGoogle Scholar
  28. Zhang, E.Q.: Some properties of the work function. J. Electron. 11(3), 244–249 (1989). (in Chinese) Google Scholar
  29. Zhang, E.Q., Liu, X.Q.: On the emission mechanism of barium containing thermionic cathodes. J. Electron. 6(2), 89–95 (1984). (in Chinese) Google Scholar
  30. Zou, J.J., Chang, B.K., Wang, H., Yang, Z., Gao, P.: Mechanism of photocurrent variation during coadsorption of Cs and O on GaAs (100). Proc. SPIE 6352, 6352391–6352396 (2006)ADSGoogle Scholar
  31. Zou, J.J., Chang, B.K., Yang, Z., Du, X.Q., Gao, P., Qiao, J.L.: Evolution of photocurrent during coadsorption of Cs and O on GaAs (100). Chin. Phys. Lett. 24, 1731–1734 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic EngineeringNanjing University of Information Science and TechnologyNanjingChina
  2. 2.School of AutomationNanjing Institute of TechnologyNanjingChina
  3. 3.School of Information Science and EngineeringUniversity of JinanJinanChina

Personalised recommendations