Ultrafast all-optical digital comparator using quantum-dot semiconductor optical amplifiers

  • K. KomatsuEmail author
  • G. Hosoya
  • H. Yashima


In this investigation, three types of 160 Gb/s all-optical digital comparators using quantum-dot semiconductor optical amplifiers (QD-SOAs) are constructed. These configurations have different combination patterns of logic gates and QD-SOAs. Based on numerical simulations, we investigate and evaluate the performance of the devices in terms of the number of logic gates and QD-SOAs, and the value of the extinction ratio (ER). In addition, we demonstrate the effect of amplified spontaneous emission (ASE) noise on the ER and Q-factor. The results show that two of the three configurations are superior to the other configuration in terms of circuit complexity, value of ER, and sensitivity to injection current. Moreover, these two configurations achieve ER values over 10 dB and Q-factor over 9, even when intense ASE noise is considered. The proposed configurations have several advantages such as high quality, easy configuration, insensitivity to injection current, and strong noise robustness, which are favorable for practical applications. This investigation also facilitates the specification of the pros and cons of each configuration, and the determination of the appropriate comparator according to the desired requirements.


All-optical digital comparator Quantum-dot semiconductor optical amplifier (SOA) Logic gates Amplified spontaneous emission (ASE) 



This work was supported by JSPS KAKENHI Grant Numbers 17K06443 and 16K18108.


  1. Agrawal, G.P.: Fiber Optic Communication Systems, 3rd edn. Wiley, New York (2002)CrossRefGoogle Scholar
  2. Berrettini, G., Simi, A., Malacarne, A., Bogoni, A., Poti, L.: Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate. IEEE Photon. Technol. Lett. 18(8), 917–919 (2006)ADSCrossRefGoogle Scholar
  3. Bogoni, A., Poti, L., Proietti, R., Meloni, G., Ponzini, F., Ghelfi, P.: Regenerative and reconfigurable all-optical logic gates for ultra-fast applications. Electron. Lett. 41(7), 435–436 (2005)CrossRefGoogle Scholar
  4. Bogoni, A., Poti, L., Ghelfi, P., Scaffardi, M., Porzi, C., Ponzini, F., Meloni, G., Berrettini, G., Malacarne, A., Prati, G.: OTDM-based optical communications networks at 160 Gbit/s and beyond. Opt. Fiber Technol. 13(1), 1–12 (2007)ADSCrossRefGoogle Scholar
  5. Chattopadhyay, T., Gayen, D.K.: Reconfigurable all-optical delay flip flop using QD-SOA assisted Mach–Zehnder interferometer. J. Lightwave Technol. 32(23), 4571–4577 (2014)CrossRefGoogle Scholar
  6. Dimitriadou, E., Zoiros, K.E.: On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Laser Technol. 44(3), 600–607 (2012)ADSCrossRefGoogle Scholar
  7. Dimitriadou, E., Zoiros, K.E.: All-optical XOR gate using single quantum-dot SOA and optical filter. J. Lightwave Technol. 31(23), 3813–3821 (2013a)ADSCrossRefGoogle Scholar
  8. Dimitriadou, E., Zoiros, K.E.: On the feasibility of 320 Gb/s all-optical AND gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Prog. Electromagn. Res. B 50, 113–140 (2013b)CrossRefGoogle Scholar
  9. Ezra, Y.B., Lembrikov, B.I., Haridim, M.: Acceleration of gain recovery and dynamics of electrons in QD-SOA. IEEE J. Quantum Electron. 41(10), 1268–1273 (2005)ADSCrossRefGoogle Scholar
  10. Ezra, Y.B., Lembrikov, B.I., Haridim, M.: Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 45(1), 34–41 (2009)ADSCrossRefGoogle Scholar
  11. Gayen, D.K., Bhattachryya, A., Chattopadhyay, T., Roy, J.N.: Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. J. Lightwave Technol. 30(21), 3387–3393 (2012)ADSCrossRefGoogle Scholar
  12. Gayen, D.K., Chattopadhyay, T.: Designing of optimized all-optical half adder circuit using single quantum-dot semiconductor optical amplifier assisted Mach–Zehnder interferometer. J. Lightwave Technol. 31(12), 2029–2035 (2013)ADSCrossRefGoogle Scholar
  13. Han, H., Zhang, M., Ye, P., Zhang, F.: Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifier in nonlinear Mach–Zehnder interferometer. Opt. Commun. 281(20), 5140–5145 (2008)ADSCrossRefGoogle Scholar
  14. Katayama, T., Hayashi, D., Kawaguchi, H.: All-optical shift register using polarization bistable VCSEL array. IEEE Photon. Technol. Lett. 28(19), 2062–2065 (2016)ADSCrossRefGoogle Scholar
  15. Kaur, S.: All-optical data comparator and decoder using SOA-based Mach–Zehnder interferometer. Optik 124(17), 2650–2653 (2013)ADSCrossRefGoogle Scholar
  16. Kaur, S., Prakash, A.: All-optical comparator using logic operation based on nonlinear properties of semiconductor optical amplifier. J. Opt. 47(1), 104–109 (2018)CrossRefGoogle Scholar
  17. Komatsu, K., Hosoya, G., Yashima, H.: All-optical logic NOR gate using a single quantum-dot SOA-assisted an optical filter. Opt. Quant. Electron. 50(131), 1–18 (2018)Google Scholar
  18. Kotb, A.: Computational analysis of solitons all-optical logic NAND and XNOR gates using semiconductor optical amplifiers. Opt. Quantum Electron. 1–17 (2017)Google Scholar
  19. Kotb, A., Ma, S., Chen, Z., Dutta, N.K., Said, G.: Effect of amplified spontaneous emission on semiconductor optical amplifier based all-optical logic. Opt. Commun. 284(24), 5798–5803 (2011)ADSCrossRefGoogle Scholar
  20. Lazzeri, E., Malacarne, A., Serafino, G., Bogoni, A.: Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide. IEEE Photon. Technol. Lett. 24(24), 2258–2261 (2012)ADSCrossRefGoogle Scholar
  21. Lee, J.H., Tanemura, T., Takushima, Y., Kikuchi, K.: All-optical 80-Gb/s add-drop multiplexer using fiber-based nonlinear optical loop mirror. IEEE Photon. Technol. Lett. 17(4), 840–842 (2005)ADSCrossRefGoogle Scholar
  22. Littler, I.C.M., Rochette, M., Eggleton, B.J.: Adjustable bandwidth dispersionless bandpass FBG optical filter. Opt. Exp. 13(9), 3397–3407 (2005)ADSCrossRefGoogle Scholar
  23. Nakarmi, B., Rakib-Uddin, M., Won, Y.H.: Realization of all-optical digital comparator using single mode Fabry–Pérot laser diodes. J. Lightwave Technol. 29(19), 3015–3021 (2011)ADSCrossRefGoogle Scholar
  24. Salehi, M.R., Taherian, S.F.: Performance analysis of a high-speed all-optical subtractor using a quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. J. Opt. Soc. Korea 18(1), 65–70 (2014)CrossRefGoogle Scholar
  25. Scaffardi, M., Ghelfi, P., Lazzeri, E., Poti, L., Bogoni, A.: Photonic processing for digital comparison and full addition based on semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron. 14(3), 826–833 (2008)ADSCrossRefGoogle Scholar
  26. Singh, P., Tripathi, D.K., Jaiswal, S., Dixit, H.K.: All-optical logic gates: designs, classification, and comparison. Adv. Opt. Technol. 2014, 1–13 (2014)Google Scholar
  27. Singh, S., Kaur, S., Kaur, R., Kaler, R.S.: Photonic processing of all-optical Johnson counter using semiconductor optical amplifiers. IET Optoelectron. 11(1), 8–14 (2017)CrossRefGoogle Scholar
  28. Takada, K., Okamoto, K.: Optical low-coherence reflectometry using a gaussian bandpass filter for measuring WDM components. IEEE Photon. Technol. Lett. 11(8), 1021–1023 (1999)ADSCrossRefGoogle Scholar
  29. Tilsch, M., Hulse, C.A., Zernik, F.K., Modavis, R.A., Addiego, C.J., Sargent, R.B., O’Brien, N.A., Pinkney, H., Turukhin, A.V.: Experimental demonstration of thin-film dispersion compensation for 50-GHz filters. IEEE Photon. Technol. Lett. 15(1), 66–68 (2003)ADSCrossRefGoogle Scholar
  30. Wang, Y., Zhang, X., Dong, J., Huang, D.: Simultaneous demonstration on all-optical digital encoder and comparator at 40 Gb/s with semiconductor optical amplifiers. Opt. Express 15(23), 15080–15085 (2007)ADSCrossRefGoogle Scholar
  31. Xu, Z., Jin, Q., Tu, Z., Gao, S.: All-optical wavelength conversion for telecommunication mode-division multiplexing signals in integrated silicon waveguides. Appl. Opt. 57(18), 5036–5042 (2018)ADSCrossRefGoogle Scholar
  32. Yu, C., Christen, L., Luo, T., Wang, Y., Pan, Z., Yan, L.S., Willner, A.E.: All-optical XOR gate using polarization rotation in single highly nonlinear fiber. IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Management ScienceTokyo University of ScienceTokyoJapan
  2. 2.Department of Information and Computer TechnologyTokyo University of ScienceTokyoJapan

Personalised recommendations