Surface coupling of plasma optical emission spectra with bent metal-clad waveguide

  • Syed Ashar Ali
  • Sang Jeen HongEmail author


We present the design of compact bent metal-clad waveguides to collect the vertically emitted light and to transmit to the horizontal direction. The intention of the design is to collect the plasma optical emission spectra inside the semiconductor etch process chamber to monitor plasma gas phase chemistry resides in the process chamber. Coupler A has been designed for visible spectra range from 748 to 753 nm at which the maximum coupling efficiency is over 52%, while Coupler B operates at the wavelength range from 775 to 780 nm with coupling strength of 62% and Coupler C covers the visible spectrum from 808 to 813 nm with its maximum efficiency of 60%. The surface couplers reveal good spectral characteristics, considerable alignment tolerance and minimal size of 9 × 5 × 1.6 µm3 each. Relatively simple geometrical structure over conventional grating coupler is advantageous to lower the fabrication cost as well.


Surface coupling Metal-clad waveguides Visible spectrum Integrated optics Nano-photonics 



This work was supported by KEIT (No. 10082395), and authors are grateful to faculty and staffs in Semiconductor Process Diagnosis Research Center (SPDRC) in Myongji University for their support to measure plasma OES in the FAB and various discussions on plasma.


  1. Ali, S.A., Hong, S.J.: Compact arrayed waveguide gratings for visible wavelengths based on silicon nitride. Ukr. J. Phys. Opt. 18(4), 239–248 (2017)CrossRefGoogle Scholar
  2. Bachim, A.L., Ogunsola, O., Bachim, B.L., Gaylord, T.K.: Optical-fiber-to-waveguide coupling using carbon-dioxide-laser-induced long-period fiber gratings. Opt. Lett. 30, 2080–2082 (2005)ADSCrossRefGoogle Scholar
  3. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)ADSCrossRefGoogle Scholar
  4. Boffard, J.A.: Non-equilibrium electron energy distribution in oxygen plasma: observation with optical emission spectroscopy. In: APS Meeting Abstracts (2017)Google Scholar
  5. Gao, Y., Bolle, C., Low, Y., Papazian, R., Cappuzzo, M., Keller, B., Pardo, F., Earnshaw, M.P.: Hybrid integration with efficient ball lens-based optical coupling for compact WDM transmitters. IEEE Photonics Technol. Lett. 28(22), 2549–2552 (2016)ADSCrossRefGoogle Scholar
  6. Ghosh, S., Rahman, B.M.: An innovative straight resonator incorporating a vertical slot as an efficient bio-chemical sensor. IEEE J. Sel. Top. Quantum Electron. 23(2), 132–139 (2017)ADSCrossRefGoogle Scholar
  7. Gröblacher, S., Hill, J.T., Safavi-Naeini, A.H., Chan, J., Painter, O.: Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity. Appl. Phys. Lett. 103(18), 181104 (2013)ADSCrossRefGoogle Scholar
  8. Hwang, S., Lee, M., Kim, S., Hong, S.J.: Characterization of silicon nitride-cored silicon photonics waveguide material for optical microring resonator. J. Nanoelectron. Optoelectron. 12(9), 903–907 (2017)CrossRefGoogle Scholar
  9. Kramida, A.R.: NIST Atomic Spectra Database (ver. 5.5.6) (online). Retrieved from National Institute of Standards and Technology, MD (2018).
  10. Liu, J.A.: Double inverse nanotapers for efficient light coupling to integrated photonic devices (2018). arXiv preprint arXiv: 1803.02662Google Scholar
  11. Lu, Z.A.: Fiber-to-waveguide and 3D chip-to-chip light coupling based on bent metal-clad waveguides (2016). arXiv preprint arXiv: 1606.00417Google Scholar
  12. Marcuvitz, N.: Waveguide Handbook. Springer, New York (1951)Google Scholar
  13. Miller, B.L.: Design, manufacture, and testing of a silicon nitride ring resonator-based biosensing platform. In: Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX, 106290Z (2018)Google Scholar
  14. Noriki, A., Amano, T., Shimura, D., Onawa, Y., Sasaki, H., Yamada, K., Nishi, H., Tsuchizawa, T., Ukita, S., Sasaki, M., Mori, M.: Broadband and polarization-independent efficient vertical optical coupling with 45° mirror for optical I/O of Si photonics. J. Lightwave Technol. 34(3), 978–984 (2016)ADSCrossRefGoogle Scholar
  15. Peng, C.: Gradient index optical waveguide coupler (2014)Google Scholar
  16. Pu, M., Liu, L., Ou, H., Yvind, K., Hvam, J.M.: Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide. Opt. Commun. 283(19), 3678–3682 (2010)ADSCrossRefGoogle Scholar
  17. Reed, G.T., Knights, A.P.: Silicon Photonics: An Introduction. Wiley, New York (2004)CrossRefGoogle Scholar
  18. Roelkens, G., VanThourhout, D., Baets, R.: High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay. Opt. Express 14(24), 11622–11630 (2006)ADSCrossRefGoogle Scholar
  19. Ryckeboer, E.A.: Spectroscopic sensing and applications in silicon photonics. In: 14th IEEE International Conference on Group IV Photonics (GFP), IEEE, pp. 77–78 (2017)Google Scholar
  20. Subbaraman, H., Xu, X., Hosseini, A., Zhang, X., Zhang, Y., Kwong, D., Chen, R.T.: Recent advances in silicon-based passive and active optical interconnects. Opt. Express 23(3), 2487–2511 (2015)ADSCrossRefGoogle Scholar
  21. VanLaere, F., Roelkens, G., Ayre, M., Schrauwen, J., Taillaert, D., VanThourhout, D., Krauss, T.F., Baets, R.: Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides. J. Lightwave Technol. 25(1), 151–156 (2007)ADSCrossRefGoogle Scholar
  22. Veronis, G., Fan, S.: Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl. Phys. Lett. 87(13), 131102 (2005)ADSCrossRefGoogle Scholar
  23. Voges, E.: Coupling techniques: prism-, grating-and endfire-coupling. In: Voges, E. (ed.) Integrated Optics, Springer, pp. 323–333 (1983)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronic EngineeringMyongji University KoreaYonginSouth Korea

Personalised recommendations