Advertisement

Physical and nonclassical properties of the interaction between a four-level atom and field in coherent state of Morse potential

  • Haifa S. Alqannas
  • S. Abdel-KhalekEmail author
Article
  • 7 Downloads

Abstract

The quantum system of the field initially defined by the k-photon-added Morse potential coherent states (MPCSs) of the radiation field interacting with a four-level atom (FLA) was studied. The physical and non-classical properties of the field defined by the MPCS system were quantified using the Mandel parameter. The effect of time-dependent coupling (TDC) on the atomic speed was examined. Moreover, the dynamic properties of the non-local correlation between the FLA and MPCS radiation field were studied and compared with those of the geometric phase. We also investigated the influence of the initial interaction conditions and different system parameters on the evolution of the non-local correlation, Mandel parameter, and geometric phase. The relationships between the geometric phase, Mandel parameter, and non-local correlation with TDC were explored.

Keywords

Mandel parameter Geometric phase Morse potential coherent states Entanglement 

Notes

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. G-459/363/1439. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

References

  1. Abdel-Khalek, S.: Quantum entanglement and geometric phase of two moving two-level atoms. Open Sys. Inf. Dyn. 22, 1550015 (2015)MathSciNetCrossRefGoogle Scholar
  2. Abdel-Khalek, S., Abdel-Wahab, N.H.: Dynamics of entanglement between moving four-level atom and single mode cavity field. Int. J. Theor. Phys. 50, 562–570 (2011)CrossRefGoogle Scholar
  3. Abdel-Khalek, S., El-Saman, Y.S., Abdel-Aty, M.: Geometric phase of a moving three-level atom. Optics Commun. 283, 1826–1831 (2010)ADSCrossRefGoogle Scholar
  4. Abdel-Khalek, S., Mousa, A.A., Nofal, T.A.: Dynamic properties of Wehrl information entropy and Wehrl phase distribution for a moving four-level atom. J. Russ. Laser Res. 33, 547–558 (2012)CrossRefGoogle Scholar
  5. Abdel-Khalek, S., Berrada, K., Alkhateeb, S.A.: Measures of nonclassicality for a two-level atom interacting with power-law potential field under decoherence effect. Laser Phys. 26, 095201 (2016)ADSCrossRefGoogle Scholar
  6. Abdel-Khalek, S., Halawani, S.H.A., Obada, A.S.F.: Effect of time dependent coupling on the dynamical properties of the nonlocal correlation between two three-level atoms. Int. J. Theor. Phys. 56, 2990–3004 (2017)MathSciNetCrossRefGoogle Scholar
  7. Abdel-Khalek, S., El-Saman, Y.S., Mechai, I., Abdel-Aty, M.: Geometric phase and entanglement of a three-level atom with and without rotating wave approximation. Braz. J. Phys. 45, 9–15 (2017)Google Scholar
  8. Abdel-Khalek, S., Berrada, K., Eleuch, H.: Quantum quantifiers of Raman photon pairs with relativistic motion. Opt. Quantum Electron. 50, 151–163 (2018)CrossRefGoogle Scholar
  9. Algarni, M., Al-Ghamdi, H., Abdel-Khalek, S.: Wehrl entropy, entropy squeezing and nonlocal correlation of moving atoms in squeezed coherent field. Appl. Math. Inf. Sci. 11, 1455–1461 (2017)MathSciNetCrossRefGoogle Scholar
  10. Alqannas, H.S., Abdel-Khalek, S.: Entanglement and pancharatnam phase of a four-level atom in coherent states within generalized Heisenberg algebra. J. Russ. Laser Res. 38, 134–140 (2017)CrossRefGoogle Scholar
  11. Alsahhaf, M.A., Aldaghfag, S.A., Abdel-Khalek, S.: Physical properties, field purity, and quantum phase for a two-level atom in photon-added coherent states for the Morse potential. J. Russ. Laser Res. 38, 437–445 (2017)CrossRefGoogle Scholar
  12. Bennett, C.H., Brassard, G., Cr-epeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefGoogle Scholar
  13. Berrada, K., Abdel-Khalek, S.: Nonclassical properties and purity of a qubit system in photon-added squeezed thermal states with time-dependent coupling effect. Phys. E 84, 361–366 (2016)CrossRefGoogle Scholar
  14. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 329, 45–57 (1984)ADSMathSciNetCrossRefGoogle Scholar
  15. Bouwmeester, D., Ekert, A., Zeilinger, A.: The Physics of Quantum Information. Springer, Berlin (2000)CrossRefGoogle Scholar
  16. Braunstein, S.L.: Quantum Computing: Where Do We Want To Go Tomorrow? Wiley, New York (1999)CrossRefGoogle Scholar
  17. Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.-S., Peres, A.: Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Phys. Rev. A 56, 1163–1172 (1997)ADSMathSciNetCrossRefGoogle Scholar
  18. Hilal, E.M.A.: On the degenerate and non-degenerate two-photon interaction between a two-level atom and a quantized two-modes: entanglement and pancharatnam phase. Results Phys. 6, 4412–4418 (2016)Google Scholar
  19. Hilal, E., Alkhateeb, S., Abdel-Khalek, S.: Pancharatnam phase and field purity of a three-level atom in nonlinear Kerr medium field based on generalized Heisenberg algebra. J. Comput. Theor. Nanosci. 14, 965–971 (2017)CrossRefGoogle Scholar
  20. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)CrossRefGoogle Scholar
  21. Kalaga, J.K., Kowalewska-Kudłaszyk, A., Leoński, W., Barasiński, A.: Quantum correlations and entanglement in a model comprised of a short chain of nonlinear oscillators. Phys. Rev. A 94, 032304–032316 (2016)ADSCrossRefGoogle Scholar
  22. Kalaga, J.K., Leonski, W., Szczesniak, R.: Quantum steering and entanglement in three-mode triangle Bose–Hubbard system. Quantum Inf. Process 16, 265 (2017)ADSMathSciNetCrossRefGoogle Scholar
  23. Kalaga, J.K., Leoński, W., Peřina, J.: Einstein-Podolsky-Rosen steering and coherence in the family of entangled three-qubit states. Phys. Rev. A 97, 042110–042122 (2018)ADSCrossRefGoogle Scholar
  24. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  25. Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34(1), 57–64 (1929)ADSCrossRefGoogle Scholar
  26. Obada, A.-S.F., Abdel-Khalek, S.: New features of the atomic Wehrl entropy and its density in multi-quanta two-level system. J. Phys. A 37, 6573–6585 (2004)ADSMathSciNetCrossRefGoogle Scholar
  27. Pancharatnam, S.: Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. A 44, 247–262 (1956)MathSciNetCrossRefGoogle Scholar
  28. Phoenix, S.J.D., Knight, P.L.: Establishment of an entangled atom-field state in the Jaynes–Cummings model. Phys. Rev. A 44, 6023–6029 (1991)ADSCrossRefGoogle Scholar
  29. Popov, D., Zaharie, I., Dong, S.-H.: Photon-added coherent states for the Morse oscillator. Czechoslov. J. Phys. 56, 157–166 (2006)ADSMathSciNetCrossRefGoogle Scholar
  30. Simon, B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167–2170 (1983)ADSMathSciNetCrossRefGoogle Scholar
  31. von Neumann, J.: The Measuring Process in Mathematische Grundlagen der Quantenmechanik, Ch.V. Springer, Berlin (1932)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceUniversity of JeddahJeddahSaudi Arabia
  3. 3.Mathematics and Statistics Department, Faculty of ScienceTaif UniversityTaifSaudi Arabia
  4. 4.Mathematics Department, Faculty of ScienceSohag UniversitySohâgEgypt

Personalised recommendations