Optical power dependence of capacitance in uni-traveling-carrier photodetectors
- 8 Downloads
Abstract
Optical power dependence of capacitance in uni-traveling-carrier photodetectors is analyzed by founding a differential capacitance model. The trend of capacitance variation against optical power by simulation gets a good agreement with the measured results. The relationship between light-intensity-dependent capacitance and DC saturation characteristics of the device is also investigated at different collection layer thicknesses. The optical power at the maximum point of capacitance is near that at the DC saturation point. With the thickness of collection layer increasing, the maximum capacitance decreases and optical power at capacitance maximum point also becomes small.
Keywords
Capacitance Optical power Uni-traveling-carrier photodetectors Collection layerNotes
Acknowledgements
This work was supported by the Joint Laboratory of Quantum Optoelectronics and the Theory of Bivergentum and Beijing International Scientific and Technological Cooperation Base of Information Optoelectronics and Nano-heterogeneous Structure. This work was funded by National Nature and Science Foundation of China (NSFC) (61574019, 61674018, and 61674020) and Fund of State Key Laboratory of Information Photonics and Optical Communications and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20130005130001).
References
- Atlas User’s Manual: SILVACO International (2010)Google Scholar
- Cicek, O., Tecimer, H.U., Tan, S.O., Tecimer, H., et al.: Evaluation of electrical and photovoltaic behaviours as comparative of Au/n-GaAs (MS) diodes with and without pure and graphene (Gr)-doped polyvinyl alcohol (PVA) interfacial layer under dark and illuminated conditions. Compos. B Eng. 98, 260–268 (2016)CrossRefGoogle Scholar
- Demirezen, S., et al.: Two diodes model and illumination effect on the forward and reverse bias I–V and C–V characteristics of Au/PVA (Bi-doped)/n-Si photodiode at room temperature. Curr. Appl. Phys. 13(1), 53–59 (2013)ADSCrossRefGoogle Scholar
- Effenberger, F.J., Joshi, A.M.: Dual-depletion, double-pass InGaAs photodetectors for efficient, high-speed operation. J. Lightwave Technol. 14(8), 1859–1864 (1996)ADSCrossRefGoogle Scholar
- Giboney, K.S., Rodwell, M.J.W., Bowers, J.E.: Traveling-wave photodetector design and measurements. IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996)ADSCrossRefGoogle Scholar
- Ishibashi, T., Kodama, S., Shimizu, N., Furuta, T.: High-speed response of uni-traveling-carrier photodiodes. Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997)ADSCrossRefGoogle Scholar
- Ito, H., Furuta, T., Nakajima, F., et al.: Continuous THz-wave generation using uni-traveling-carrier photodiode. In: Fifteenth International Symposium on Space Terahertz Technology (2005)Google Scholar
- Kowalczyk, A.E., Ornoch, L., Muszalski, J., Kaniewski, J.: Deep centers in InGaAs/InP layers grown by molecular beam epitaxy. Opt. Appl. 35(4), 457–463 (2005)Google Scholar
- Li, N., Li, X., Demiguel, S., et al.: High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode. Photon. Technol. Lett. IEEE 16(3), 864–866 (2004)ADSCrossRefGoogle Scholar
- Li, J., Xiong, B., Sun, C., Miao, D., Luo, Y.: Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model. Opt. Express 23(17), 21615–21623 (2015)ADSCrossRefGoogle Scholar
- Li, L.J., Zhang J.N., Wu, E.S., Zuo, Y., Zhang, Y.A., Zhang, M.L., Yuan X.G.: Analysis of the influence of MachZehnder modulator on photodiode nonlinearity. In: Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), pp. 1–5 (2017)Google Scholar
- Lischke, S., Knoll, D., Mai, C., Zimmermann, L., Peczek, A., Kroh, M., Trusch, A., Krune, E., Voigt, K., Mai, A.: High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Opt. Express 23(21), 27213–27220 (2015)ADSCrossRefGoogle Scholar
- Lucovsky, G., Lasser, M.E., Emmons, R.B.: Coherent light detection in solid-state photodiodes. Proc. IEEE 51(1), 166–172 (1963)CrossRefGoogle Scholar
- Mikhelashvili, V., Padmanabhan, R., Meyler, B., et al.: Negative capacitance in optically sensitive metal-insulator-semiconductor-metal structures. J. Appl. Phys. 120(22), 224502 (2016)ADSCrossRefGoogle Scholar
- Nagatsuma, T., Ito, H.: High-power RF uni-traveling-carrier photodiodes (UTC-PDs) and their applications. In: Proc. Adv. Photodiodes, pp. 291–314 (2011)Google Scholar
- Natrella, M., Liu, C.P., Graham, C., et al.: Accurate equivalent circuit model for millimetre-wave UTC photodiodes. Opt. Express 24(5), 4698–4713 (2016)ADSCrossRefGoogle Scholar
- Parks, J.W., Smith, A.W., Brennan, K.F., Tarof, L.E.: Theoretical study of device sensitivity and gain saturation of separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes. IEEE Trans. Electron. Devices 43(12), 2113–2212 (1996). https://doi.org/10.1109/16.544382 ADSCrossRefGoogle Scholar
- Riesz, R.P.: High speed semiconductor photodiodes. Rev. Sci. Instrum. 33(9), 994–998 (1962)ADSCrossRefGoogle Scholar
- Song, H.J., Ajito, K., Muramoto, Y., Wakatsuki, A., Nagatsuma, T., Kukutsu, N.: Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW. IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012)CrossRefGoogle Scholar
- Wey, Y.G., Giboney, K., Bowers, J.E., et al.: 110 GHz GaInAsP double heterostructure p-i-n photodetectors. J. Lightwave Technol. 13(7), 1490–1499 (1995)ADSCrossRefGoogle Scholar
- Williams, K.J, Goetz, P.G.: Photodiode compression due to current-dependent capacitance. In: International Topical Meeting on Microwave Photonics, IEEE, pp. 221–224 (2000)Google Scholar
- Xie, X.J., Zhou, Q.G., Norberg, E., Jacob-Mitos, M., Chen, Y.J., Yang, Z.Y., Ramaswamy, A., Fish, G., Campbell, J.C., Beling, A.: High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator. J. Lightwave Technol. 34(1), 73–78 (2016)ADSCrossRefGoogle Scholar
- Yao, J.: Microwave photonics. J. Lightwave Technol. 27(3), 314–335 (2009)ADSCrossRefGoogle Scholar
- Zeng, Q.Y., Wang, W.J., Wen, J., Xu, P.X., Hu, W.D., Li, Q., et al.: Dependence of dark current on carrier lifetime for InGaAs/InP avalanche photodiodes. Opt. Quantum Electron. 47(7), 1671–1677 (2015). https://doi.org/10.1007/s11082-014-0024-y CrossRefGoogle Scholar
- Zhang, K.R., Huang, Y.Q., Duan, X.F.: Design and analysis of hybrid integrated high-speed mushroom vertical PIN photodetector. Appl. Mech. Mater. 411, 1455–1458 (2013)CrossRefGoogle Scholar