Optical power dependence of capacitance in uni-traveling-carrier photodetectors

  • X. K. Ma
  • Y. Q. HuangEmail author
  • Y. W. Yang
  • T. Liu
  • X. F. Duan
  • K. Liu
  • X. M. Ren


Optical power dependence of capacitance in uni-traveling-carrier photodetectors is analyzed by founding a differential capacitance model. The trend of capacitance variation against optical power by simulation gets a good agreement with the measured results. The relationship between light-intensity-dependent capacitance and DC saturation characteristics of the device is also investigated at different collection layer thicknesses. The optical power at the maximum point of capacitance is near that at the DC saturation point. With the thickness of collection layer increasing, the maximum capacitance decreases and optical power at capacitance maximum point also becomes small.


Capacitance Optical power Uni-traveling-carrier photodetectors Collection layer 



This work was supported by the Joint Laboratory of Quantum Optoelectronics and the Theory of Bivergentum and Beijing International Scientific and Technological Cooperation Base of Information Optoelectronics and Nano-heterogeneous Structure. This work was funded by National Nature and Science Foundation of China (NSFC) (61574019, 61674018, and 61674020) and Fund of State Key Laboratory of Information Photonics and Optical Communications and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20130005130001).


  1. Atlas User’s Manual: SILVACO International (2010)Google Scholar
  2. Cicek, O., Tecimer, H.U., Tan, S.O., Tecimer, H., et al.: Evaluation of electrical and photovoltaic behaviours as comparative of Au/n-GaAs (MS) diodes with and without pure and graphene (Gr)-doped polyvinyl alcohol (PVA) interfacial layer under dark and illuminated conditions. Compos. B Eng. 98, 260–268 (2016)CrossRefGoogle Scholar
  3. Demirezen, S., et al.: Two diodes model and illumination effect on the forward and reverse bias I–V and C–V characteristics of Au/PVA (Bi-doped)/n-Si photodiode at room temperature. Curr. Appl. Phys. 13(1), 53–59 (2013)ADSCrossRefGoogle Scholar
  4. Effenberger, F.J., Joshi, A.M.: Dual-depletion, double-pass InGaAs photodetectors for efficient, high-speed operation. J. Lightwave Technol. 14(8), 1859–1864 (1996)ADSCrossRefGoogle Scholar
  5. Giboney, K.S., Rodwell, M.J.W., Bowers, J.E.: Traveling-wave photodetector design and measurements. IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996)ADSCrossRefGoogle Scholar
  6. Ishibashi, T., Kodama, S., Shimizu, N., Furuta, T.: High-speed response of uni-traveling-carrier photodiodes. Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997)ADSCrossRefGoogle Scholar
  7. Ito, H., Furuta, T., Nakajima, F., et al.: Continuous THz-wave generation using uni-traveling-carrier photodiode. In: Fifteenth International Symposium on Space Terahertz Technology (2005)Google Scholar
  8. Kowalczyk, A.E., Ornoch, L., Muszalski, J., Kaniewski, J.: Deep centers in InGaAs/InP layers grown by molecular beam epitaxy. Opt. Appl. 35(4), 457–463 (2005)Google Scholar
  9. Li, N., Li, X., Demiguel, S., et al.: High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode. Photon. Technol. Lett. IEEE 16(3), 864–866 (2004)ADSCrossRefGoogle Scholar
  10. Li, J., Xiong, B., Sun, C., Miao, D., Luo, Y.: Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model. Opt. Express 23(17), 21615–21623 (2015)ADSCrossRefGoogle Scholar
  11. Li, L.J., Zhang J.N., Wu, E.S., Zuo, Y., Zhang, Y.A., Zhang, M.L., Yuan X.G.: Analysis of the influence of MachZehnder modulator on photodiode nonlinearity. In: Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), pp. 1–5 (2017)Google Scholar
  12. Lischke, S., Knoll, D., Mai, C., Zimmermann, L., Peczek, A., Kroh, M., Trusch, A., Krune, E., Voigt, K., Mai, A.: High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Opt. Express 23(21), 27213–27220 (2015)ADSCrossRefGoogle Scholar
  13. Lucovsky, G., Lasser, M.E., Emmons, R.B.: Coherent light detection in solid-state photodiodes. Proc. IEEE 51(1), 166–172 (1963)CrossRefGoogle Scholar
  14. Mikhelashvili, V., Padmanabhan, R., Meyler, B., et al.: Negative capacitance in optically sensitive metal-insulator-semiconductor-metal structures. J. Appl. Phys. 120(22), 224502 (2016)ADSCrossRefGoogle Scholar
  15. Nagatsuma, T., Ito, H.: High-power RF uni-traveling-carrier photodiodes (UTC-PDs) and their applications. In: Proc. Adv. Photodiodes, pp. 291–314 (2011)Google Scholar
  16. Natrella, M., Liu, C.P., Graham, C., et al.: Accurate equivalent circuit model for millimetre-wave UTC photodiodes. Opt. Express 24(5), 4698–4713 (2016)ADSCrossRefGoogle Scholar
  17. Parks, J.W., Smith, A.W., Brennan, K.F., Tarof, L.E.: Theoretical study of device sensitivity and gain saturation of separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes. IEEE Trans. Electron. Devices 43(12), 2113–2212 (1996). ADSCrossRefGoogle Scholar
  18. Riesz, R.P.: High speed semiconductor photodiodes. Rev. Sci. Instrum. 33(9), 994–998 (1962)ADSCrossRefGoogle Scholar
  19. Song, H.J., Ajito, K., Muramoto, Y., Wakatsuki, A., Nagatsuma, T., Kukutsu, N.: Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW. IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012)CrossRefGoogle Scholar
  20. Wey, Y.G., Giboney, K., Bowers, J.E., et al.: 110 GHz GaInAsP double heterostructure p-i-n photodetectors. J. Lightwave Technol. 13(7), 1490–1499 (1995)ADSCrossRefGoogle Scholar
  21. Williams, K.J, Goetz, P.G.: Photodiode compression due to current-dependent capacitance. In: International Topical Meeting on Microwave Photonics, IEEE, pp. 221–224 (2000)Google Scholar
  22. Xie, X.J., Zhou, Q.G., Norberg, E., Jacob-Mitos, M., Chen, Y.J., Yang, Z.Y., Ramaswamy, A., Fish, G., Campbell, J.C., Beling, A.: High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator. J. Lightwave Technol. 34(1), 73–78 (2016)ADSCrossRefGoogle Scholar
  23. Yao, J.: Microwave photonics. J. Lightwave Technol. 27(3), 314–335 (2009)ADSCrossRefGoogle Scholar
  24. Zeng, Q.Y., Wang, W.J., Wen, J., Xu, P.X., Hu, W.D., Li, Q., et al.: Dependence of dark current on carrier lifetime for InGaAs/InP avalanche photodiodes. Opt. Quantum Electron. 47(7), 1671–1677 (2015). CrossRefGoogle Scholar
  25. Zhang, K.R., Huang, Y.Q., Duan, X.F.: Design and analysis of hybrid integrated high-speed mushroom vertical PIN photodetector. Appl. Mech. Mater. 411, 1455–1458 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical CommunicationsBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations